COVID-19, affected the entire world because of its non-availability of vaccine. Due to social distancing online social networks are massively used in pandemic times. Information is being shared enormously without knowing the authenticity of the source. Propaganda is one of the type of information that is shared deliberately for gaining political and religious influence. It is the systematic and deliberate way of shaping opinion and influencing thoughts of a person for achieving the desired intention of a propagandist. Various propagandistic messages are being shared during COVID-19 about the deadly virus. We extracted data from twitter using its application program interface (API), Annotation is being performed manually. Hybrid feature engineering is performed for choosing the most relevant features.The binary classification of tweets is being performed with the help of machine learning algorithms. Decision tree gives better results among all other algorithms. For better results feature engineering may be improved and deep learning can be used for classification task.
Suicidal ideation is one of the most severe mental health issues faced by people all over the world. There are various risk factors involved that can lead to suicide. The most common & critical risk factors among them are depression, anxiety, social isolation and hopelessness. Early detection of these risk factors can help in preventing or reducing the number of suicides. Online social networking platforms like Twitter, Redditt and Facebook are becoming a new way for the people to express themselves freely without worrying about social stigma. This paper presents a methodology and experimentation using social media as a tool to analyse the suicidal ideation in a better way, thus helping in preventing the chances of being the victim of this unfortunate mental disorder. The data is collected from Twitter, one of the popular Social Networking Sites (SNS). The Tweets are then pre-processed and annotated manually. Finally, various machine learning and ensemble methods are used to automatically distinguish Suicidal and Non-Suicidal tweets. This experimental study will help the researchers to know and understand how SNS are used by the people to express their distress related feelings and emotions. The study further confirmed that it is possible to analyse and differentiate these tweets using human coding and then replicate the accuracy by machine classification. However, the power of prediction for detecting genuine suicidality is not confirmed yet, and this study does not directly communicate and intervene the people having suicidal behaviour.
The main motive behind this research paper is to use the power of social media to observe, examine and analyze the opinion regarding recent Indian government project as the opinion of people plays a vital role in formulating the government policies. By getting into the deeper insights on social media, one can easily analyze the behavior of people regarding various issues and policies, which was otherwise impossible using traditional sources. The case study was done on Statue of Unity. Analysis was done on one of the famous social networking sites i.e. Twitter, using R programming language. Twitter API was used to collect the primary data. Tweets were analyzed by using opinion lexicon and Emotion lexicon-based approaches. Opinion Lexicon based approach categorized the sentiment of tweets in three categories, while Emotion Lexicon based approach refined them into eight more categories. The research work done in this paper will help government to understand the emotions of people regarding their policies and will also enrich people to help them understand majority vote of people
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.