The effects of the present global climate change appear more pronounced in high latitudes and alpine regions. Transitions zones, such as the southern fringe of the boreal region in northern Mongolia, are expected to experience drastic changes as a result. This area is dry and cold with forests forming only on the north-facing slopes of hills and grasslands distributing on the south-facing slopes, making it difficult for continuous forests to exist. However, in the Hovsgol Lake Basin, there is a vast continuous pure forest of Siberian larch (Larix sibirica). In other words, the lake water thawing/freezing process may have created a unique climatic environment that differs with the climate of the adjacent Darhad Basin, where no lake exists. Thus, in order to compare the effect of the thawing/freezing dynamics of lake water and the active layer on the thermal regime at each basin, respectively, temperatures were simultaneously measured. The Darhad Basin has similar latitude, topography, area, and elevation conditions. As expected, the presence of the lake affected the annual temperature amplitude, as it was 60% of that in the Darhad Basin. The difference in the seasonal freeze–thaw cycles of the lake and the active layer caused a significant difference in the thermal regime, especially in winter.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.