Osmotic-sensitive (os-1) mutant alleles in Neurospora crassa exhibit resistance to dicarboximides, aromatic hydrocarbons and phenylpyrroles. We have previously reported that the os-1 mutants can be classified into two groups based on their resistance to fungicides and osmotic stress: type I, which are highly resistant to iprodione and fludioxonil but moderately sensitive to osmotic stress, and type II, which are highly sensitive to osmotic stress but moderately resistant to fungicides. To explain the mechanism of resistance to these fungicides, we cloned and sequenced the mutant os-1 genes that encode putative osmo-sensing histidine kinase. Within the os-1 gene product (Os1p), the type I strains, NM233t and Y256M209, carried a stop codon at amino acid position 308 and a frameshift at amino acid position 294, respectively. These mutation sites were located on the upstream of histidine kinase and the response regulator domains of Os1p, strongly suggesting that type I strains are null mutants. The null mutants, NM233t and Y256M209, were highly resistant to iprodione and fludioxonil; thus Os1p is essential for these fungicides to express their antifungal activity. The amino acid changes in Os1p, 625Pro from Leu, 578Val from Ala, and 580Arg from Gly were found in the type II strains, M16, M155-1 and P5990, respectively. Os1p is novel in having six tandem repeats of 90 amino acids in the N terminal. Each amino acid change of the type II strains was located on the fifth unit of six tandem repeats. Type II strains with single amino acid changes were more sensitive to osmotic stress than the null mutants (type I), indicating that the amino acid repeats of Os1p were responsible for an important function in osmo-regulation.
Partial DNA fragments of Botrytis cinerea field isolates encoding the putative osmosensor histidine kinase gene (BcOS1) were cloned by polymerase chain reaction amplification and the predicted amino acid sequences were compared between dicarboximide-sensitive and resistant field isolates. The predicted BcOS1p is highly homologous to osmosensor histidine kinase OS1p from Neurospora crassa including the N-terminal six tandem repeats of approximately 90 amino acids. Four dicarboximide-resistant isolates of B. cinerea (Bc-19, Bc-45, Bc-682, and Bc-RKR) contained a single base pair mutation in their BcOS1 gene that resulted in an amino acid substitution in the predicted protein. In these resistant isolates, codon 86 of the second repeat, which encodes an isoleucine residue in sensitive strains, was converted to a codon for serine. The mutation of Botrytis field resistant isolates was located on the second unit of tandem amino acid repeats of BcOS1p, whereas the point mutations of the fifth repeat of OS1p confer resistance to both dicarboximides and phenylpyrroles and also osmotic sensitivity in Neurospora crassa. These results suggest that an amino acid substitution within the second repeat of BcOS1p is responsible for phenotypes of field resistant isolates (resistant to dicarboximides but sensitive to phenylpyrroles, and normal osmotic sensitivity) in B. cinerea.
Botrytis cinerea, an economically important gray mold pathogen, frequently exhibits multiple fungicide resistance. A fluorescence resonance energy transfer-based real-time polymerase chain reaction assay has been developed to detect benzimidazole- and dicarboximide-resistant mutations. Three benzimidazole-resistant mutations-(198)Glu to Ala (E198A), F200Y, and E198K-in beta-tubulin BenA were detected using a single set of fluorescence-labeled sensor and anchor probes by melting curve analysis. Similarly, three dicarboximide-resistant mutations-I365S, V368F plus Q369H, and Q369P-in the histidine kinase BcOS1 were successfully distinguished. Unassigned melting profiles in BenA genotyping assay resulted in the identification of a new benzimidazole-resistant BenA E198V mutation. This mutation conferred resistance to carbendazim as do E198A and E198K mutations. The isolates with BenA E198V mutation showed a negative cross-resistance to diethofencarb, but to a lesser extent than the E198A mutants. A survey of 210 B. cinerea field isolates revealed that most of benzimidazole-resistant isolates possessed the E198V or E198A mutation in the BenA gene, and the I365S mutation in the BcOS1 gene was also frequently observed in Japanese isolates. However, benzimidazole-resistant isolates with BenA F200Y or E198K mutations, which confer the diethofencarb-insensitive phenotype, were rare. Our BenA and BcOS1 genotyping is a rapid and reliable method that is suitable for monitoring the fungicide-resistant field population.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.