tion-mass spectrometry (LC-ESI-MS) analysis. We hereby report the exact identity of 16 oxysterols and downstream metabolites, including cholestenoic acids, found in human CSF (Supplemental Table 1; supplemental material available online with this article; doi:10.1172/JCI68506DS1). The most abundant of these metabolites (19.48-0.40 ng/ml; Supplemental Figure 1) were 7α-hydroxy-3-oxocholest-4-en-26-oic acid (7αH,3O-CA), 3β-hydroxycholest-5-en-26-oic acid (3β-HCA), and 2 newly identified metabolites in CSF, 3β,7α-diHCA and 3β,7β-dihydroxycholest-5-en-26-oic acid (3β,7β-diHCA). Precursors of these acids, including 26-HC and newly identified 7α,26-dihydroxycholesterol (7α,26-diHC; cholest-5-ene-3β,7α,26-triol) and 7α,26-dihydroxycholest-4-en-3-one (7α,26-diHCO), were also found, but at lower levels (0.15-0.03 ng/ml). Our results thus identified 4 novel oxysterol metabolites in human CSF that were downstream of 26-HC ( Figure 1A). 26-HC is metabolized via 7α,26-diHC and 7α,26-diHCO, or via 3β-HCA and 3β,7α-diHCA, to 7αH,3O-CA. While 26-HC can cross the blood-brain barrier (BBB) and enter the brain from the circulation (25), 7αH,3O-CA traverses the BBB and is exported from the brain (26). Very low levels of 24S-hydroxycholesterol (24S-HC; cholest-5-ene-3β,24S-diol), 25-hydroxycholesterol (25-HC; cholest-5-ene-3β,25-diol), and newly identified 7α,25-dihydroxycholesterol (7α,25-diHC; cholest-5-ene-3β,7α,25-triol) and 7α,25-dihydroxycholest-4-en-3-one (7α,25-diHCO) were also found in CSF (0.08-0.03 ng/ml).Reduced levels of 7α-hydroxylated cholestenoic acids in CSF and plasma/serum of human patients with SPG5. SPG5 presents with upper motor neuron signs and results from mutations in CYP7B1, encoding the oxysterol 7α-hydroxylase responsible for 7α-hydroxylation of side-chain oxidized sterols that is required for extrahepatic synthesis of 7αH,3O-CA and its precursor, 3β,7α-diHCA ( Figure 1A and ref. 18). In order to examine the pathogenic role of such mutations, we sought to identify alterations in oxysterol and cholestenoic acid profiles in CSF and plasma from these patients and then examine the biological activities of the altered metabolites. We first studied the CSF from 3 patients with SPG5
We investigated the pathogenic roles of CC chemokine ligand (CCL)3 and its receptors, CC chemokine receptor (CCR)1 and CCR5, in bleomycin (BLM)-induced pulmonary fibrosis (PF). An intratracheal injection of BLM into wild-type (WT) mice caused a massive infiltration of granulocytes and macrophages, followed by the development of diffuse PF with fibrocyte accumulation. Intrapulmonary CCL3 expression was enhanced rapidly and remained at elevated levels until PF developed. Moreover, CCL3 protein was detected mainly in infiltrating granulocytes and macrophages, whereas transforming growth factor-1 protein was detected in macrophages and myofibroblasts. Compared with WT mice, collagen accumulation was reduced in CCL3 ؊/؊ and CCR5 ؊/؊ but not CCR1 ؊/؊ mice. Moreover, the BLMinduced increases in intrapulmonary macrophage and fibrocyte numbers were attenuated in CCL3 ؊/؊ and CCR5 ؊/؊ but not CCR1 ؊/؊ mice, although BLM increased bone marrow (BM) fibrocyte number to a similar extent in these strains. BM transplantation from CCR5 ؊/؊ to WT, but not that from WT to CCR5 ؊/؊ mice, recapitulated the phenotypes in CCR5 ؊/؊ mice. Furthermore, CCR5؉/؊ mice exhibited a significant reduction in BLM-induced fibrotic changes. These results demonstrated that locally produced CCL3 was involved in BLMinduced recruitment of BM-derived macrophages and fibrocytes, main producers of transforming growth factor-1, and subsequent development of PF by interacting mainly with CCR5.
Foxp3 controls the development and function of regulatory T (Treg) cells, but it remains elusive how Foxp3 functions in vivo. Here, we established mouse models harboring three unique missense Foxp3 mutations that were identified in patients with the autoimmune disease IPEX. The I363V and R397W mutations were loss-of-function mutations, causing multi-organ inflammation by globally compromising Treg cell physiology. By contrast, the A384T mutation induced a distinctive tissue-restricted inflammation by specifically impairing the ability of Treg cells to compete with pathogenic T cells in certain non-lymphoid tissues. Mechanistically, repressed BATF expression contributed to these A384T effects. At the molecular level, the A384T mutation altered Foxp3 interactions with its specific target genes including Batf by broadening its DNA-binding specificity. Our findings identify BATF as a critical regulator of tissue Treg cells and suggest that sequence-specific perturbations of Foxp3-DNA interactions can influence specific facets of Treg cell physiology and the immunopathologies they regulate.
Although enhanced expression of IL-1 family proteins, including IL-1α, IL-1β, and IL-1 receptor antagonist (IL-1ra) during wound healing has been observed, the pathophysiological roles of these factors, particularly IL-1ra, still remain elusive. We explored skin wound-healing processes in IL-1ra-deficient mice. Compared to wild-type (WT) mice, IL-1ra-deficient mice exhibited impaired wound healing, as evidenced by attenuated collagen deposition and delayed neovascularization. In contrast, neutrophil recruitment was significantly exaggerated, with the augmented expression of IL-1s, TNF-α, and CXC chemokines, MIP-2 and KC, in IL-1ra-deficient mice compared with WT mice. Because the transcription of these proinflammatory cytokines and CXC chemokines requires the activation of NF-κB, a major target of IL-1- and TNF-α-mediated signal pathway, we examined the activation states of NF-κB. Nuclear translocation of NF-κB p65 was significantly enhanced and prolonged in IL-1ra-deficient mice, compared to that in WT mice. The cross-talk between NF-κB and TGF-β-mediated signals has been proposed based on in vitro observations. Indeed, compared to WT mice, the amounts of total and phosphorylated Smad2 and Smad3 were decreased with a reciprocal increase in the amount of Smad7 in skin wound sites of IL-1ra-deficient mice. Moreover, the gene expression of vascular endothelial growth factor, a target gene of TGF-β1, was decreased in IL-1ra-deficient mice. Thus, the absence of IL-1ra may suppress TGF-β-mediated signaling pathway, which is crucial for collagen deposition and vascular endothelial growth factor-mediated neovascularization in wound healing.
BM-derived endothelial progenitor cells (EPCs
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.