The E2 gene of the branched-chain α-keto acid dehydrogenase (BCKDH) complex was studied at the molecular level in three patients with intermittent maple syrup urine disease (MSUD). All three patients had higher BCKDH activity than did those with the classical phenotype. In the first patient, a single base substitution from A to G in intron 8 created a new 5Ј splice site and caused an insertion of 126 nucleotides between exons 8 and 9 by activating an upstream cryptic 3Ј splice site in the same intron. The predicted mRNA encoded a truncated protein with 282 amino acids including 4 novel ones at the carboxyl terminus, compared with the normal protein with 421 amino acids. In vitro, the region from the patient but not from a normal control was recognized and was recovered as a novel exon, indicating that the single substitution was responsible for incorporation of the region into mRNA. This mutation probably supports an exon definition model in which the spliceosome recognizes a 3Ј splice site and then scans downstream for an acceptable 5Ј splice site, thereby defining an exon. The second patient was homozygous for a G to T transversion at nucleotide 1463 in exon 11, which predicted a substitution of the termination codon by a leucine residue and the addition of 7 extra amino acids at the carboxyl terminus. For each mutation, these two patients were homozygous and their parents were heterozygous. The third patient was a compound heterozygote for a C to G transversion at nucleotide 309 in exon 4 and a G to A transition at nucleotide 1165 in exon 9, causing an Ile-toMet substitution at amino acid 37 and a Gly-to-Ser substitution at amino acid 323, respectively. Taken together, these results indicate that the molecular basis of intermittent phenotype MSUD in some patients can be due to mutations in the E2 gene, giving rise to a low but significant residual activity of the BCKDH complex.
The Japanese Study Group of Insulin Therapy for Childhood and Adolescent Diabetes (JSGIT) was established in July 1994 with the chief aim to improve the quality of therapy for type 1 diabetes in children, an entity far less common in Japan than in Europe. We proposed four initial research topics: (i) to determine the current status of medical care and glycemic control in Japanese children with type 1 diabetes mellitus; (ii) to standardize the measurement of hemoglobin A1c; (iii) to establish a registry of a large cohort of patients in order to enable prospective studies to improve the quality of therapy for children with type 1 diabetes in Japan; and (iv) to enable participants of the JSGIT to hold a workshop twice annually. We registered a total of 736 patients from 45 hospitals throughout Japan. Intervention via insulin treatment was instituted after 2 yr for those patients whose hemoglobin A1c level was more than 8.1%. The proportion of patients receiving multiple insulin injections increased after intervention; however, average hemoglobin A1c in females remained significantly higher than in males. We identified two forms of diabetes in Japanese children: a rapidly progressive form and a more slowly progressive form. There was a significantly higher prevalence of a family history of diabetes in first-degree relatives in the slowly progressive form. These preliminary findings are the result of the first collaborative study of childhood diabetes in Japan.
Juvenile visceral steatosis (JVS) mice have been reported to have systemic carnitine deficiency, and the carnitine concentration in the liver of JVS mice was markedly lower than that of controls (11.6 +/- 2.6 versus 393.5 +/- 56.4 nmol/g of wet liver). To evaluate the role of carnitine in mitochondrial beta-oxidation in liver, we examined the effects of carnitine on ketogenesis in perfused liver from control and JVS mice. In control mice, ketogenesis was increased by the infusion of 0.3 mM oleate, but not by L-carnitine. In contrast, although ketogenesis in JVS mice was not increased by the infusion of oleate, it was increased 2.5-fold by the addition of 1000 microM L-carnitine. Addition of 50, 100, and 200 microM L-carnitine increased ketogenesis in a dose-dependent manner. The infusion of 0.3 mM octanoate or butyrate increased ketogenesis in a carnitine-independent fashion in both control and JVS mice. These findings suggest that endogenous long chain fatty acids from accumulated triglycerides may be used as substrates in the presence of carnitine in JVS mice. The relationship between ketogenesis and free carnitine concentration was examined in livers from JVS mice. Ketogenesis increased as free carnitine levels increased until concentrations exceeded about 100 nmol/g of wet liver (340 microM). The free carnitine concentration required for half-maximal ketone body production in liver of JVS mice was 45 microM (13 nmol/g of wet liver), which corresponds to a K(m) value of carnitine palmitoyltransferase I. We conclude that carnitine is a rate-limiting factor for beta-oxidation in liver only when the carnitine level in liver is very low.
Background: Evidence is accumulating that the promoter region of the insulin-like growth factor I (IGF-I) gene polymorphism and low levels of IGF-I are associated with type 2 diabetes, cardiovascular disease and birth weight; however, the number of wild-type alleles is different in each country. Objectives: This study aimed to examine the 737/738 marker, a cytosine–adenine repeat in the promoter region of the IGF-I gene polymorphism, and plasma IGF-I levels in Japanese infants and analyze the genetic background. Methods: Data were collected for 15 months in Kyoto Prefectural University of Medicine. The body composition parameters of all infants were determined at birth. At 5 days after birth, we took blood samples to measure the product size of the promoter region of the IGF-I gene polymorphism and plasma IGF-I. Results: In a population-based sample of 160 subjects, 6 different alleles and 16 genotypes were identified in the promoter region of the IGF-I gene polymorphism. The existence of a 196-bp allele has proved to result in a low plasma IGF-I level, a small head and chest circumference (p < 0.05) and no significant for premature birth, short-birth height and low-birth weight. Conclusions: This is the first study showing the role of the promoter region of the IGF-I gene polymorphism and the level of plasma IGF-I and body composition parameters in Japanese infants. Our results suggest genetical influence on prenatal growth and serum IGF-I levels.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.