The generation of genetic variation (somatic hypermutation) is an essential process for the adaptive immune system in vertebrates. We demonstrate the targeted single-nucleotide substitution of DNA using hybrid vertebrate and bacterial immune systems components. Nuclease-deficient type II CRISPR/Cas9 (clustered regularly interspaced short palindromic repeats/CRISPR-associated) and the activation-induced cytidine deaminase (AID) ortholog PmCDA1 were engineered to form a synthetic complex (Target-AID) that performs highly efficient target-specific mutagenesis. Specific point mutation was induced primarily at cytidines within the target range of five bases. The toxicity associated with the nuclease-based CRISPR/Cas9 system was greatly reduced. Although combination of nickase Cas9(D10A) and the deaminase was highly effective in yeasts, it also induced insertion and deletion (indel) in mammalian cells. Use of uracil DNA glycosylase inhibitor suppressed the indel formation and improved the efficiency.
We applied a fusion of CRISPR-Cas9 and activation-induced cytidine deaminase (Target-AID) for point mutagenesis at genomic regions specified by single guide RNAs (sgRNAs) in two crop plants. In rice, we induced multiple herbicide-resistance point mutations by multiplexed editing using herbicide selection, while in tomato we generated marker-free plants with homozygous heritable DNA substitutions, demonstrating the feasibility of base editing for crop improvement.
In eukaryotes, the CRISPR-Cas9 system has now been widely used as a revolutionary genome engineering tool. However, in prokaryotes, the use of nuclease-mediated genome editing tools has been limited to negative selection for the already modified cells because of its lethality. Here, we report on deaminase-mediated targeted nucleotide editing (Target-AID) adopted in Escherichia coli. Cytidine deaminase PmCDA1 fused to the nuclease-deficient CRISPR-Cas9 system achieved specific point mutagenesis at the target sites in E. coli by introducing cytosine mutations without compromising cell growth. The cytosine-to-thymine substitutions were induced mainly within an approximately five-base window of target sequences on the protospacer adjacent motif-distal side, which can be shifted depending on the length of the single guide RNA sequence. Use of a uracil DNA glycosylase inhibitor in combination with a degradation tag (LVA tag) resulted in a robustly high mutation efficiency, which allowed simultaneous multiplex editing of six different genes. The major multi-copy transposase genes that consist of at least 41 loci were also simultaneously edited by using four target sequences. As this system does not rely on any additional or host-dependent factors, it may be readily applicable to a wide range of bacteria.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.