Monolayer molybdenum disulfide (MoS) is an atomically thin semiconducting material with a direct band gap. This physical property is attributable to atomically thin optical devices such as sensors, light-emitting devices, and photovoltaic cells. Recently, a near-unity photoluminescence (PL) quantum yield of a monolayer MoS was demonstrated via a treatment with a molecular acid, bis(trifluoromethane)sulfonimide (TFSI); however, the mechanism still remains a mystery. Here, we work on PL enhancement of monolayer MoS by treatment of Brønsted acids (TFSI and sulfuric acid (HSO)) to identify the importance of the protonated environment. In TFSI as an acid, different solvents-1,2-dichloroethane (DCE), acetonitrile, and water-were studied, as they show quite different acidity in solution. All of the solvents showed PL enhancement, and the highest was observed in DCE. This behavior in DCE would be due to the higher acidity than others have. Acids from different anions can also be studied in water as a common solvent. Both TFSI and HSO showed similar PL enhancement (∼4-8 enhancement) at the same proton concentration, indicating that the proton is a key factor to enhance the PL intensity. Finally, we considered another cation, Li from LiSO, instead of HSO, in water. Although Li and H atoms showed similar binding energy on MoS from theoretical calculations, LiSO treatment showed little PL enhancement; only coexisting HSO reproduced the enhancement. This study demonstrated the importance of a protonated environment to increase the PL intensity of monolayer MoS. The study will lead to a solution to achieve high optical quality and to implementation for atomically thin optical devices.
Recent advancements in the portability and affordability of optical motion capture systems have opened the doors to various clinical applications. In this paper, we look into the potential use of motion capture data for the quantitative analysis of motor symptoms in Parkinson's Disease (PD). The standard of care, human observer-based assessments of the motor symptoms, can be very subjective and are often inadequate for tracking mild symptoms. Motion capture systems, on the other hand, can potentially provide more objective and quantitative assessments. In this pilot study, we perform full-body motion capture of Parkinson's patients with deep brain stimulator off-drugs and with stimulators on and off. Our experimental results indicate that the quantitative measure on spatio-temporal statistics learnt from the motion capture data reveal distinctive differences between mild and severe symptoms. We used a Support Vector Machine (SVM) classifier for discriminating mild vs. severe symptoms with an average accuracy of approximately 90%. Finally, we conclude that motion capture technology could potentially be an accurate, reliable and effective tool for statistical data mining on motor symptoms related to PD. This would enable us to devise more effective ways to track the progression of neurodegenerative movement disorders.
Understanding the characteristics of ground reaction forces (GRFs) on both limbs during sprinting in unilateral amputees wearing running-specific prostheses would provide important information that could be utilized in the evaluation of athletic performance and development of training methods in this population. The purpose of this study was to compare GRFs between intact and prosthetic limbs during sprinting in unilateral transfemoral amputees wearing running-specific prostheses. Nine sprinters with unilateral transfemoral amputation wearing the same type of prosthesis performed maximal sprinting on a 40-m runway. GRFs were recorded from 7 force plates placed in the center of the runway. Peak forces and impulses of the GRFs in each direction were compared between limbs. Peak forces in vertical, braking, propulsive, and medial directions were significantly greater in intact limbs than those in prosthetic limbs, whereas there were no significant differences in peak lateral force between limbs. Further, significantly less braking impulses were observed in prosthetic limbs than in intact limbs; however, the other measured impulses were not different between limbs. Therefore, the results of the present study suggest that limb-specific rehabilitation and training strategies should be developed for transfemoral amputees wearing running-specific prostheses.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.