We reveal experimentally waveguiding characteristics and group-velocity dispersion of line defects in photonic crystal slabs as a function of defect widths. The defects have waveguiding modes with two types of cutoff within the photonic band gap. Interference measurements show that they exhibit extraordinarily large group dispersion, and we found waveguiding modes whose traveling speed is 2 orders of magnitude slower than that in air. These characteristics can be tuned by controlling the defect width, and the results agree well with theoretical calculations, indicating that we can design light paths with made-to-order dispersion.
We propose an ultrahigh quality factor (Q) photonic crystal slab nanocavity created by the local width modulation of a line defect. We show numerically that this nanocavity has an intrinsic Q value of up to 7×107. Transmission measurements for fabricated Si photonic-crystal-slab nanocavities directly coupled to input/output waveguides have exhibited a loaded Q value of ∼800000. These theoretical and experimental Q values are very high for photonic crystal nanocavities. In addition, we demonstrate that simply shifting two holes away from a line defect is sufficient to achieve an ultrahigh Q value both theoretically and experimentally.
We have demonstrated all-optical bistable switching operation of resonant-tunnelling devices with ultra-small high-Q Si photonic-crystal nanocavities. Due to their high Q/V ratio, the switching energy is extremely small in comparison with that of conventional devices using the same optical nonlinear mechanism. We also show that they exhibit all-opticaltransistor action by using two resonant modes. These ultrasmall unique nonlinear bistable devices have potentials to function as various signal processing functions in photonic-crystal-based optical-circuits.
We demonstrate all-optical switching in the telecommunication band, in silicon photonic crystals at high speed (∼50ps), with extremely low switching energy (a few 100fJ), and high switching contrast (∼10dB). The devices consist of ultrasmall high-quality factor nanocavities connected to input and output waveguides. Switching is induced by a nonlinear refractive-index change caused by the plasma effect of carriers generated by two-photon absorption in silicon. The high-quality factor and small mode volume led to an extraordinarily large reduction in switching energy. The estimated internal switching energy in the nanocavity is as small as a few tens of fJ, indicating that further reduction on the operating energy is possible.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.