This paper deals with fracture process of a ceramic-metal functionally graded material (FGM) under three-point-bending. The used material was fabricated by powder metallurgy using partially stabilized zirconia (PSZ) and stainless steel (SUS 304), and has a functionally graded surface layer (FGM layer) on a SUS 304 substrate. In order to investigate the fracture process of the FGM, three-point-bending tests of rectangular specimens and numerical analysis are carried out. During the three-point-bending tests, crack initiation and unstable crack growth occur in the FGM layer, and the crack is arrested at the interface between the FGM layer and the substrate. Then, the crack branches and both crack tips grow stably along the interface with increasing deformation. After some amount of crack growth, both crack tips are arrested, and a new crack is initiated and grows into the SUS 304 substrate ahead of the initial cracking of the FGM layer. The finite element analysis taking account of gradation of material composition and plasticity of SUS 304 phase is carried out for each stage of fracture process. Based on the numerical results of the stress intensity factor, plastic zone and stress distribution, the fracture behavior of the FGM is discussed in detail.
The objective of this study was to construct a finite element (FE) model of table tennis rubber (Sandwich rubber) with pimples structure, which can accurately estimate the rebound behavior of the ball at impact, and to investigate effects of its structure on ball rebound behavior. The sandwich rubber is composed of a combination of a rubber and foam layers. The FE model of the sandwich rubber was constructed with non-linearity, strain rate dependency, and energy absorption which were expressed based on the results of material tests. Impact analyses were conducted using the developed model of sandwich rubber and ball with different pimple heights. The simulation results of rebound behavior do not tend to be proportional to the pimple height. The trend of the rebound behavior was mainly affected by the amount of impulse during impact calculated using the horizontal component of the contact force which was varied with changes in pimple height.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.