SummaryLegionella pneumophila has a Dot/Icm type IV secretion system used to translocate a number of 'effector proteins' which subvert host cell functions. In this study, we identified 19 novel Dot/Icm substrate proteins using a systematic screening technique. A BLAST analysis revealed that one of the substrates, which we named LubX (LegionellaU-box protein), contains two domains that have a remarkable similarity to the U-box, a domain found in eukaryotic E3 ubiquitin ligases. The expression of LubX is induced upon infection, and most of the LubX produced was translocated into the host cells. LubX has ubiquitin ligase activity in conjunction with UbcH5a or UbcH5c E2 enzymes and mediates polyubiquitination of host Clk1 (Cdc2-like kinase 1). We demonstrate that one of the U-boxes (U-box 1) is critical to the ubiquitin ligation, and the other U-box (U-box 2) mediates interaction with Clk1. Thus, the two U-boxes of LubX have distinct functions, and U-box 2 plays a non-canonical role in substrate binding. Although we demonstrate that inhibition of Clk kinase results in a marked reduction of Legionella growth within mouse macrophages, the consequence of Clk1 ubiquitination is still being elucidated. Together, these data suggest that Clk1 is the target host molecule which Legionella modulates during infection.
Vibrio cholerae has three sets of chemotaxis (Che) proteins, including three histidine kinases (CheA) and four response regulators (CheY) that are encoded by three che gene clusters. We deleted the cheY genes individually or in combination and found that only the cheY3 deletion impaired chemotaxis, reinforcing the previous conclusion that che cluster II is involved in chemotaxis. However, this does not exclude the involvement of the other clusters in chemotaxis. In other bacteria, phospho-CheY binds directly to the flagellar motor to modulate its rotation, and CheY overexpression, even without CheA, causes extremely biased swimming behavior. We reasoned that a V. cholerae CheY homolog, if it directly controls flagellar rotation, should also induce extreme swimming behavior when overproduced. This was the case for CheY3 (che cluster II). However, no other CheY homolog, including the putative CheY (CheY0) protein encoded outside the che clusters, affected swimming, demonstrating that these CheY homologs cannot act directly on the flagellar motor. CheY4 very slightly enhanced the spreading of an Escherichia coli cheZ mutant in semisolid agar, raising the possibility that it can affect chemotaxis by removing a phosphoryl group from CheY3. We also found that V. cholerae CheY3 and E. coli CheY are only partially exchangeable. Mutagenic analyses suggested that this may come from coevolution of the interacting pair of proteins, CheY and the motor protein FliM. Taken together, it is likely that the principal roles of che clusters I and III as well as cheY0 are to control functions other than chemotaxis.
The human pathogen Legionella pneumophila delivers a large array of the effector proteins into host cells using the Dot/Icm type IVB secretion system. Among the proteins composing the Dot/Icm system, an inner membrane protein DotI is known to be crucial for the secretion function but its structure and role in type IV secretion had not been elucidated. We report here the crystal structures of the periplasmic domains of DotI and its ortholog in the conjugation system of plasmid R64, TraM. These structures reveal a striking similarity to VirB8, a component of type IVA secretion systems, suggesting that DotI/TraM is the type IVB counterpart of VirB8. We further show that DotI and its partial paralog DotJ form a stable heterocomplex. R64 TraM, encoded by the conjugative plasmid lacking DotJ ortholog, forms a homo-hexamer. The DotI-DotJ complex is distinct from the core complex, which spans both inner and outer membranes to form a substrate conduit, and seems not to stably associate with the core complex. These results give insight into VirB8-family inner membrane proteins essential for type IV secretion and aid towards understanding the molecular basis of secretion systems essential for bacterial pathogenesis.
SummaryVibrio cholerae has three sets of chemotaxis-related signaling proteins, of which only System II has been shown to be involved in chemotaxis. Here, we examined localization of green fluorescent protein (GFP)-fused components of System I. The histidine kinase (CheA1) and the adaptor (CheW0) of System I localized to polar and lateral membrane regions with standing incubation (microaerobic conditions), but their localization was lost after shaking (aerobic conditions). A transmembrane receptor of System I also showed polar and lateral localization with standing incubation. By contrast, GFP-fused components of System II localized constitutively to the flagellated pole. Nitrogen gas, sodium azide or carbonylcyanide m-chlorophenylhydrazone induced localization of CheA1-GFP even with shaking incubation, suggesting that the localization is controlled in response to changes in energy metabolism. Fluorescently labeled tetracysteine-tagged CheA1 also showed azideinduced localization, arguing against artifactual effects of GFP fusions. These results suggest that System I components are assembled into the supramolecular signaling complex in response to reduced cellular energy states, raising the possibility that the System I complex plays a role in sensing and signaling under microaerobic environments, such as in the host intestine.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.