Hydroxycinnamic acid amides (HCAAs) are secondary metabolites involved in the defense of plants against pathogens. Here, we report the first identification of HCAAs, p-coumaroylagmatine, feruloylagmatine, p-coumaroylputrescine and feruloylputrescine, in Arabidopsis thaliana rosette leaves infected with Alternaria brassicicola and the assignment of At5g61160 as the agmatine coumaroyltransferase (AtACT) that catalyzes the last reaction in the biosynthesis of the HCAAs. Feeding experiments with putative labeled precursors revealed that the four HCAAs were synthesized from hydroxycinnamic acids and agmatine or putrescine. AtACT gene function was identified from an analysis of a mutant that did not accumulate HCAAs. In wild-type Arabidopsis, AtACT transcripts markedly increased in response to A. brassicicola infection. Enzymatic activity that catalyzes the synthesis of the HCAAs was confirmed in vitro by using a recombinant AtACT expressed in Escherichia coli. The Atact mutant was susceptible to infection by A. brassicicola, indicating that HCAAs are responsible for defense against pathogens in A. thaliana.
Hordatines A and B, the strong antifungal compounds in barley (Hordeum vulgare), are biosynthesized from p-coumaroyl-and feruloyl-CoA and agmatine by two successive reactions catalyzed by agmatine coumaroyltransferase (ACT) and peroxidase. ACT catalyzes the formation of agmatine conjugates (p-coumaroylagmatine and feruloylagmatine) from precursor CoAs and agmatine, and peroxidase catalyzes the oxidative coupling of agmatine conjugates to form hordatines. Our previous study demonstrated that the short arm of barley chromosome 2H (2HS) is responsible for the biosynthesis of hordatines. In the present study, however, barley genes encoding the ACT (HvACT) and a peroxidase (HvPrx7) were found to be located on the long arm of 2H (2HL). The amounts of hordatines and precursor agmatine conjugates were analyzed in wheat (Triticum aestivum) and wheat lines carrying a whole 2H chromosome, 2HS or 2HL. The addition of 2H and 2HL elevated the levels of agmatine conjugates in wheat. This could be attributed to the HvACT on 2HL. However, the content of agmatine conjugates increased also in the 2HS addition line, suggesting the presence of another unidentified ACT gene on 2HS. Hordatines were detected in wheat, but their content was by far lower than those in barley. The 2H and 2HS addition lines accumulated substantial amounts of hordatines, while the 2HL addition line accumulated them as little as wheat did in spite of the substantial transcription of the HvPrx7 gene on 2HL and of the increased accumulation of the precursor agmatine conjugates. These facts suggest that the HvPrx7 gene on 2HL is not involved in the hordatine biosynthesis and that unidentified peroxidase gene responsible for the hordatine biosynthesis is located on 2HS in barley.
Avenanthramide B is an oat phytoalexin produced in response to pathogen attack and elicitation. We found the formation of new dimers (1-5) of avenanthramide B in elicited oat leaves. The dimers were synthesized by a reaction of peroxidase and avenanthramide B in the presence of hydrogen peroxide. The structures of 1-5 were determined by spectroscopic analyses, chemical derivatization, and 15N labeling. Compound 1 was a dehydrodimer of avenanthramide B with a bisbutane lactam skeleton, while 2-4 were monohydrated dehydrodimers with butane lactam structures. Compound 5 was also a monohydrated dehydrodimer but with a tetrahydrofuran structure. All the compounds were classified into lignanamides that were formed by an 8'-8' coupling reaction between two avenanthramide B units.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations鈥揷itations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.