Mesenchymal stem cells (MSC) are increasingly being studied as a source of cell therapy for neurodegenerative diseases, and several groups have reported their beneficial effects on Alzheimer's disease (AD). In this study using AD model mice (APdE9), we found that transplantation of MSC via the tail vein improved spatial memory in the Morris water maze test. Using electron paramagnetic resonance imaging to evaluate the in vivo redox state of the brain, we found that MSC transplantation suppressed oxidative stress in AD model mice. To elucidate how MSC treatment ameliorates oxidative stress, we focused on amyloid- (A) pathology and microglial function. MSC transplantation reduced A deposition in the cortex and hippocampus. Transplantation of MSC also decreased Iba1-positive area in the cortex and reduced activated ameboid shaped microglia. On the other hand, MSC transplantation accelerated accumulation of microglia around A deposits and prompted microglial A uptake and clearance as shown by higher frequency of A-containing microglia. MSC transplantation also increased CD14-positive microglia in vivo, which play a critical role in A uptake. To confirm the effects of MSC on microglia, we co-cultured the mouse microglial cell line MG6 with MSC. Co-culture with MSC enhanced A uptake by MG6 cells accompanied by upregulation of CD14 expression. Additionally, co-culture of MG6 cells with MSC induced microglial phenotype switching from M1 to M2 and suppressed production of proinflammatory cytokines. These data indicate that MSC treatment has the potential to ameliorate oxidative stress through modification of microglial functions, thereby improving A pathology in AD model mice.
Parkinson’s disease (PD) is a progressive, age-related, neurodegenerative disorder, and oxidative stress is an important mediator in its pathogenesis. DJ-1, the product of the causative gene of a familial form of PD, plays a significant role in anti-oxidative defence to protect cells from oxidative stress. DJ-1 undergoes preferential oxidation at the cysteine residue at position 106 (Cys-106) under oxidative stress. Here, using specific antibodies against Cys-106-oxidized DJ-1 (oxDJ-1), it was found that the levels of oxDJ-1 in the erythrocytes of unmedicated PD patients (n = 88) were higher than in those of medicated PD patients (n = 62) and healthy control subjects (n = 33). Elevated oxDJ-1 levels were also observed in a non-human primate PD model. Biochemical analysis of oxDJ-1 in erythrocyte lysates showed that oxDJ-1 formed dimer and polymer forms, and that the latter interacts with 20S proteasome. These results clearly indicate a biochemical alteration in the blood of PD patients, which could be utilized as an early diagnosis marker for PD.
To explore a novel therapy against Parkinson's disease through enhancement of α7 nicotinic acetylcholine receptor (nAChR), we evaluated the neuroprotective effects of 3-[(2,4-dimethoxy)benzylidene]-anabaseine dihydrochloride (DMXBA; GTS-21), a functionally selective α7 nAChR agonist, in a rat 6-hydroxydopamine (6-OHDA)-induced hemiparkinsonian model. Microinjection of 6-OHDA into the nigrostriatal pathway of rats destroys dopaminergic neurons selectively. DMXBA dose dependently inhibited methamphetamine-stimulated rotational behavior and dopaminergic neuronal loss induced by 6-OHDA. The protective effects were abolished by methyllycaconitine citrate salt hydrate, an α7 nAChR antagonist. Immunohistochemical study confirmed abundant α7 nAChR expression in the cytoplasm of dopaminergic neurons. These results indicate that DMXBA prevented 6-OHDA-induced dopaminergic neuronal loss through stimulating α7 nAChR in dopaminergic neurons. Injection of 6-OHDA elevated immunoreactivities to glial markers such as ionized calcium binding adaptor molecule 1, CD68, and glial fibrillary acidic protein in the substantia nigra pars compacta of rats. In contrast, these immunoreactivities were markedly inhibited by comicroinjection of DMXBA. Microglia also expressed α7 nAChR in both resting and activated states. Hence, we hypothesize that DMXBA simultaneously affects microglia and dopaminergic neurons and that both actions lead to dopaminergic neuroprotection. The findings that DMXBA attenuates 6-OHDA-induced dopaminergic neurodegeneration and glial activation in a rat model of Parkinson's disease raisethe possibility that DMXBA could be a novel therapeutic compound to prevent Parkinson's disease development.
In response to changes of the central nervous system environment, microglia are capable of acquiring diverse phenotypes for cytotoxic or immune regulation and resolution of injury. Alzheimer's disease (AD) pathology also induces several microglial activations, resulting in production of pro-inflammatory cytokines and reactive oxygen species or clearance of amyloid-β (Aβ) through phagocytosis. We previously demonstrated that microglial activation and increase in oxidative stress started from the middle age in APPswe/PS1dE9 mice, and hypothesized that M1 activation occurs in middle-aged AD mice by Aβ stimulation. In the present study, we analyzed in vivo expressions of pro-inflammatory cytokines (M1 microglial markers), M2 microglial markers, and suppressor of cytokine signaling (SOCS) family, and examined the microglial phenotypic profile in APPswe/PS1dE9 mice. Then we compared the in vitro gene expression patterns of Aβ- and lipopolysaccharide (LPS)-stimulated primary-cultured microglia. Microglia in APPswe/PS1dE9 mice exhibited an M1-like phenotype, expressing tumor necrosis factor α (TNFα) but not interleukin 6 (IL6). Aβ-stimulated primary-cultured microglia also expressed TNFα but not IL6, whereas LPS-stimulated primary-cultured microglia expressed both pro-inflammatory cytokines. Furthermore, both microglia in APPswe/PS1dE9 mice and Aβ-stimulated primary-cultured microglia expressed SOCS3. Reduction of SOCS3 expression in Aβ-challenged primary-cultured microglia resulted in upregulation of IL6 expression. Our findings indicate that SOCS3 suppresses complete polarization to M1 phenotype through blocking IL6 production, and Aβ-challenged primary-cultured microglia replicate the in vivo gene expression pattern of microglia in APPswe/PS1dE9 mice. Aβ may induce the M1-like phenotype through blocking of IL6 by SOCS3.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.