The Kyoto Encyclopedia of Genes and Genomes (KEGG) is the primary database resource of the Japanese GenomeNet service (http://www.genome.ad.jp/) for understanding higher order functional meanings and utilities of the cell or the organism from its genome information. KEGG consists of the PATHWAY database for the computerized knowledge on molecular interaction networks such as pathways and complexes, the GENES database for the information about genes and proteins generated by genome sequencing projects, and the LIGAND database for the information about chemical compounds and chemical reactions that are relevant to cellular processes. In addition to these three main databases, limited amounts of experimental data for microarray gene expression profiles and yeast two-hybrid systems are stored in the EXPRESSION and BRITE databases, respectively. Furthermore, a new database, named SSDB, is available for exploring the universe of all protein coding genes in the complete genomes and for identifying functional links and ortholog groups. The data objects in the KEGG databases are all represented as graphs and various computational methods are developed to detect graph features that can be related to biological functions. For example, the correlated clusters are graph similarities which can be used to predict a set of genes coding for a pathway or a complex, as summarized in the ortholog group tables, and the cliques in the SSDB graph are used to annotate genes. The KEGG databases are updated daily and made freely available (http://www.genome.ad.jp/kegg/).
The CagA protein of Helicobacter pylori, which is injected from the bacteria into bacteria-attached gastric epithelial cells, is associated with gastric carcinoma. CagA is tyrosine-phosphorylated by Src family kinases, binds the SH2 domain-containing SHP-2 phosphatase in a tyrosine phosphorylation-dependent manner, and deregulates its enzymatic activity. We established AGS human gastric epithelial cells that inducibly express wildtype or a phosphorylation-resistant CagA, in which tyrosine residues constituting the EPIYA motifs were substituted with alanines. Upon induction, wild-type CagA, but not the mutant CagA, elicited strong elongation of cell shape, termed the "hummingbird" phenotype. Time-lapse video microscopic analysis revealed that the CagA-expressing cells exhibited a marked increase in cell motility with successive rounds of elongation-contraction processes. Inhibition of CagA phosphorylation by an Src kinase inhibitor, PP2, or knockdown of SHP-2 expression by small interference RNA (siRNA) abolished the CagA-mediated hummingbird phenotype. The morphogenetic activity of CagA also required Erk MAPK but was independent of Ras or Grb2. In AGS cells, CagA prolonged duration of Erk activation in response to serum stimulation. Conversely, inhibition of SHP-2 expression by siRNA abolished the sustained Erk activation. Thus, SHP-2 acts as a positive regulator of Erk activity in AGS cells. These results indicate that SHP-2 is involved in the Ras-independent modification of Erk signals that is necessary for the morphogenetic activity of CagA. Our work therefore suggests a key role of SHP-2 in the pathological activity of H. pylori virulence factor CagA.
Deficits in prepulse inhibition (PPI) are a biological marker for schizophrenia. To unravel the mechanisms that control PPI, we performed quantitative trait loci (QTL) analysis on 1,010 F2 mice derived by crossing C57BL/6 (B6) animals that show high PPI with C3H/He (C3) animals that show low PPI. We detected six major loci for PPI, six for the acoustic startle response, and four for latency to response peak, some of which were sex-dependent. A promising candidate on the Chromosome 10-QTL was Fabp7 (fatty acid binding protein 7, brain), a gene with functional links to the N-methyl-D-aspartic acid (NMDA) receptor and expression in astrocytes. Fabp7-deficient mice showed decreased PPI and a shortened startle response latency, typical of the QTL's proposed effects. A quantitative complementation test supported Fabp7 as a potential PPI-QTL gene, particularly in male mice. Disruption of Fabp7 attenuated neurogenesis in vivo. Human FABP7 showed altered expression in schizophrenic brains and genetic association with schizophrenia, which were both evident in males when samples were divided by sex. These results suggest that FABP7 plays a novel and crucial role, linking the NMDA, neurodevelopmental, and glial theories of schizophrenia pathology and the PPI endophenotype, with larger or overt effects in males. We also discuss the results from the perspective of fetal programming.
BackgroundGenomic selection or genome-wide selection (GS) has been highlighted as a new approach for marker-assisted selection (MAS) in recent years. GS is a form of MAS that selects favourable individuals based on genomic estimated breeding values. Previous studies have suggested the utility of GS, especially for capturing small-effect quantitative trait loci, but GS has not become a popular methodology in the field of plant breeding, possibly because there is insufficient information available on GS for practical use.ScopeIn this review, GS is discussed from a practical breeding viewpoint. Statistical approaches employed in GS are briefly described, before the recent progress in GS studies is surveyed. GS practices in plant breeding are then reviewed before future prospects are discussed.ConclusionsStatistical concepts used in GS are discussed with genetic models and variance decomposition, heritability, breeding value and linear model. Recent progress in GS studies is reviewed with a focus on empirical studies. For the practice of GS in plant breeding, several specific points are discussed including linkage disequilibrium, feature of populations and genotyped markers and breeding scheme. Currently, GS is not perfect, but it is a potent, attractive and valuable approach for plant breeding. This method will be integrated into many practical breeding programmes in the near future with further advances and the maturing of its theory.
BackgroundPeanut (Arachis hypogaea) is an autogamous allotetraploid legume (2n = 4x = 40) that is widely cultivated as a food and oil crop. More than 6,000 DNA markers have been developed in Arachis spp., but high-density linkage maps useful for genetics, genomics, and breeding have not been constructed due to extremely low genetic diversity. Polymorphic marker loci are useful for the construction of such high-density linkage maps. The present study used in silico analysis to develop simple sequence repeat-based and transposon-based markers.ResultsThe use of in silico analysis increased the efficiency of polymorphic marker development by more than 3-fold. In total, 926 (34.2%) of 2,702 markers showed polymorphisms between parental lines of the mapping population. Linkage analysis of the 926 markers along with 253 polymorphic markers selected from 4,449 published markers generated 21 linkage groups covering 2,166.4 cM with 1,114 loci. Based on the map thus produced, 23 quantitative trait loci (QTLs) for 15 agronomical traits were detected. Another linkage map with 326 loci was also constructed and revealed a relationship between the genotypes of the FAD2 genes and the ratio of oleic/linoleic acid in peanut seed.ConclusionsIn silico analysis of polymorphisms increased the efficiency of polymorphic marker development, and contributed to the construction of high-density linkage maps in cultivated peanut. The resultant maps were applicable to QTL analysis. Marker subsets and linkage maps developed in this study should be useful for genetics, genomics, and breeding in Arachis. The data are available at the Kazusa DNA Marker Database (http://marker.kazusa.or.jp).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.