Recent developments in nanotechnology have led to a method for producing free‐standing polymer nanosheets as a macromolecular organization. Compared with bulk films, the large aspect ratio of such nanosheets leads to unique physical properties, such as transparency, noncovalent adhesion, and high flexibility. Here, a biomedical application of polymer nanosheets consisting of biocompatible and biodegradable polysaccharides is reported. Micro‐scratch and bulge tests indicate that the nanosheets with a thickness of tens of nanometers have sufficient physical adhesiveness and mechanical strength for clinical use. A nanosheet of 75 nm thickness, a critical load of 9.1 × 104 N m−1, and an elastic modulus of 9.6 GPa is used for the minimally invasive repair of a visceral pleural defect in beagle dogs without any pleural adhesion caused by wound repair. For the first time, clinical benefits of sheet‐type nano‐biomaterials based on molecular organization are demonstrated, suggesting that novel therapeutic tools for overlapping tissue wounds will be possible without the need for conventional surgical interventions.
For soil-dwelling bacteria that usually live in a carbon-rich and nitrogen-poor environment, the ability to utilize chitin – the second most abundant polysaccharide on earth – is a decisive evolving advantage as it is a source for both elements. Streptomycetes are high-GC Gram-positive soil bacteria that are equipped with a broad arsenal of chitinase-degrading genes. These genes are induced when the streptomycetes sense the presence of chitooligosaccharides. Their expression is repressed as soon as more readily assimilated carbon sources become available. This includes for example glucose or N-acetylglucosamine, the monomer subunit of chitin. Historically, the first cis-acting elements involved in carbon regulation in streptomycetes were found more than a decade ago upstream of chitinase genes, but the transcriptional regulator had so far remained undiscovered. In this work, we show that these cis-acting elements consist of inverted repeats with multiple occurrences and are bound by the HutC/GntR type regulator DasR. We have therefore designated these sites as DasR-responsive elements (dre). DasR, which is also the repressor of the genes for the N-acetylglucosamine-specific phosphotransferase transport system, should therefore play a critical role in sensing the balance between the monomeric and polymeric forms of N-acetylglucosamine.
Background—
The existence of an atypical fast-slow (F/S) atrioventricular nodal reentrant tachycardia (AVNRT) including a superior (sup) pathway with slow conductive properties and an atrial exit near the His bundle has not been confirmed.
Methods and Results—
We studied 6 women and 2 men (age, 74±7 years) with sup-F/S-AVNRT who underwent successful radiofrequency ablation near the His bundle. Programmed ventricular stimulation induced retrograde conduction over a superior SP with an earliest atrial activation near the His bundle, a mean shortest spike-atrial interval of 378±119 milliseconds, and decremental properties in all patients. sup-F/S-AVNRT was characterized by a long-RP interval; a retrograde atrial activation sequence during tachycardia identical to that over a sup-SP during ventricular pacing; ventriculoatrial dissociation during ventricular overdrive pacing of the tachycardia in 5 patients or atrioventricular block occurring during tachycardia in 3 patients, excluding atrioventricular reentrant tachycardia; termination of the tachycardia by ATP; and a V-A-V activation sequence immediately after ventricular induction or entrainment of the tachycardia, including dual atrial responses in 2 patients. Elimination or modification of retrograde conduction over the sup-SP by ablation near the right perinodal region or from the noncoronary cusp of Valsalva eliminated and confirmed the diagnosis of AVNRT in 4 patients each.
Conclusions—
sup-F/S-AVNRT is a distinct supraventricular tachycardia, incorporating an SP located above the Koch triangle as the retrograde limb, that can be eliminated by radiofrequency ablation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.