In many repeat diseases, like Huntington’s disease (HD), ongoing repeat expansions in affected tissues contribute to disease onset, progression and severity. Inducing contractions of expanded repeats by exogenous agents is not yet possible. Traditional approaches would target proteins driving repeat mutations. Here we report a compound
N
aphthyridine-
A
zaquinolone (NA) that specifically binds slipped-CAG DNA intermediates of expansion mutations, a previously unsuspected target. NA efficiently induces repeat contractions in HD patient cells as well as
en masse
contractions in medium spiny neurons of HD mouse striatum. Contractions are specific for the expanded allele, independent of DNA replication, require transcription across the coding CTG strand, and arise by blocking repair of CAG slip-outs. NA-induced contractions depend upon active expansions driven by MutSβ. NA injections in HD mouse striatum reduce mutant HTT protein aggregates, a biomarker of HD pathogenesis and severity. Repeat structure-specific DNA ligands are a novel avenue to contract expanded repeats.
The expansion of CAG repeats in the human genome causes the neurological disorder Huntington's disease. The small-molecule naphthyridine-azaquinolone NA we reported earlier bound to the CAG/CAG motif in the hairpin structure of the CAG repeat DNA. In order to investigate and improve NA-binding to the CAG repeat DNA and RNA, we conducted systematic structure-binding studies of NA to CAG repeats. Among the five new NA derivatives we synthesized, surface plasmon resonance (SPR) assay showed that all of the derivatives modified from amide linkages in NA to a carbamate linkage failed to bind to CAG repeat DNA and RNA. One derivative, NBzA, modified by incorporating an additional ring to the azaquinolone was found to bind to both d(CAG)9 and r(CAG)9 . NBzA binding to d(CAG)9 was similar to NA binding in terms of large changes in the SPR assay and circular dichroism (CD) as well as pairwise binding, as assessed by electron spray ionization time-of-flight (ESI-TOF) mass spectrometry. For the binding to r(CAG)9 , both NA and NBzA showed stepwise binding in ESI-TOF MS, and NBzA-binding to r(CAG)9 induced more extensive conformational change than NA-binding. The tricyclic system in NBzA did not show significant effects on the binding, selectivity, and translation, but provides a large chemical space for further modification to gain higher affinity and selectivity. These studies revealed that the linker structure in NA and NBzA was suitable for the binding to CAG DNA and RNA, and that the tricyclic benzoazaquinolone did not interfere with the binding.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.