2-Aminopyridine (PA)-derivatized oligosaccharides from IgG were analyzed by using reversed-phase HPLC/mass spectrometry (RP-HPLC/MS) and a MS(n) spectral library, in particular, focusing on two pairs of isomers incompletely separated or coeluted in chromatograms. We previously reported that MS(n) spectral matching considering both major fragment ions (m/z) and intensities is useful and applicable to the structural assignment of PA-oligosaccharide isomers. In this study, MS(n) spectral matching based on the MS(n) spectral library was applied to the assignment of these PA-oligosaccharide isomers in IgG. Its usefulness was investigated by comparing it to the conventional two-dimensional mapping method based on retention time indexes. Specifically, we focus on the assignment and quantification of the isomers, which are coeluted in chromatograms. From this, we propose a new method using MS(n) spectral matching and the working curve on which are plotted the relative intensities of selected fragment ions in their MS(2) spectra versus various mixtures of the isomers. This new method demonstrated that the obtained quantities coincide very well with those estimated after separating by a combination of lectin and reversed-phase columns. This means that separation by RP-HPLC/MS is greatly simplified because complete separation of the isomers is no longer required. Application of this new method was tested by using the two other pairs of fucosylated and nonfucosylated PA-oligosaccharides from IgG. The results showed that this method works for them as well.
The role of additives in copper electroplating baths in the damascene process has been investigated. We proposed a bottom-up filling model and confirmed it by comparing the experimental and simulation results. Janus Green B and Basic Blue 3 which absorb on the copper surface and suppress copper deposition were examined for additive use to improve filling capability. Damascene copper grew uniformly in the bath that contained Basic Blue 3. But it grew preferentially from the bottom of the trench for Janus Green B. Addition of Janus Green B produced a continuous concentration gradient in the sub-micron trench when the additive's diffusion rate and consumption rate on the copper surface were well balanced. We estimated filling profiles from numerical simulation using parameters that were determined by an electrochemical method. These profiles agreed well with the experimental results.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.