Transmetalation between palladium(II)-vinyl complex and vinylsilane was theoretically investigated with the DFT and MP2 to MP4 methods to clarify the reaction mechanism and the reasons why fluoride anion accelerates the Pd-catalyzed cross-coupling reaction between vinyl iodide and vinylsilane. This transmetalation occurs with a very large activation barrier (45.8 kcal/mol) and a very large endothermicity (25.6 kcal/mol) in the absence of fluoride anion, where the potential energy change resulting from the solvation effect is evident. This is consistent with the experimental fact that this cross-coupling reaction does not proceed well in the absence of fluoride anion. The effects of fluoride anion were investigated in three possible reaction courses. In the first course, fluorovinylsilicate anion is formed before the transmetalation, and it reacts with the palladium(II)-vinyl complex. In the second course, an iodo ligand is substituted for fluoride anion, and then the transmetalation occurs between the palladium(II)-fluoro-vinyl complex and vinylsilane. In the third course, fluoride anion attacks the Si center of vinylsilane in the transition state of the transmetalation between the palladium(II)-iodo-vinyl complex and vinylsilane. Our theoretical calculation suggests that fluorovinylsilicate anion is not formed in the case of trimethylvinylsilane. In the second and third cases, the transmetalation occurs with a moderate activation barrier (E(a)) and a considerably large exothermicity (E(exo)): E(a) = 25.3 kcal/mol and E(exo) = 5.7 kcal/mol in the second course, and E(a) = 12.7 kcal/mol and E(exo) = 24.8 kcal/mol in the third course, indicating that fluoride anion accelerates the transmetalation via the second and third reaction courses. The acceleration of transmetalation by fluoride anion is clearly interpreted in terms of the formation of a very strong Si-F bond and the stabilization of the transition state by the hypervalent Si center, which is induced by the fluoride anion. Our computational results show that hydroxide anion accelerates the transmetalation in a manner similar to that observed with fluoride anion. From these results, we predict that the electronegative anion accelerates this transmetalation because the electronegative group forms a strong covalent bond with the silyl group and facilitates the formation of the hypervalent Si center in the transition state.
Spirocycles are attractive synthetic targets for many synthetic chemists owing to their potent and promising biological activities. We previously reported a method for the highly enantioselective allylation of various isatins with β‐amido‐functionalized allylstannanes under the influence of indium‐based chiral catalysts and applied this method to the synthesis of 2‐oxindole derivatives spiro‐fused to an α‐methylene‐γ‐butyrolactone framework. In this communication, we report the successful development of a new catalytic system that enables enantioselective tin‐free “amide allylation” with the aid of a newly prepared (β‐amidoallyl)boronate for nucleophilic addition to isatins. This system consisting of a catalytic amount of diethylzinc as a competitive candidate in the presence of chiral 1,3‐amino alcohols incorporating an acidic phenol functionality offers new opportunities for environmentally benign access to medicinally relevant spirocyclic 2‐oxindoles.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.