Rhizobia are symbiotic nitrogen-fixing soil bacteria that are associated with host legumes. The establishment of rhizobial symbiosis requires signal exchanges between partners in microaerobic environments that result in mutualism for the two partners. We developed a macroarray for Mesorhizobium loti MAFF303099, a microsymbiont of the model legume Lotus japonicus, and monitored the transcriptional dynamics of the bacterium during symbiosis, microaerobiosis, and starvation. Global transcriptional profiling demonstrated that the clusters of genes within the symbiosis island (611 kb), a transmissible region distinct from other chromosomal regions, are collectively expressed during symbiosis, whereas genes outside the island are downregulated. This finding implies that the huge symbiosis island functions as clustered expression islands to support symbiotic nitrogen fixation. Interestingly, most transposase genes on the symbiosis island were highly upregulated in bacteroids, as were nif, fix, fdx, and rpoN. The genome region containing the fixNOPQ genes outside the symbiosis island was markedly upregulated as another expression island under both microaerobic and symbiotic conditions. The symbiosis profiling data suggested that there was activation of amino acid metabolism, as well as nif-fix gene expression. In contrast, genes for cell wall synthesis, cell division, DNA replication, and flagella were strongly repressed in differentiated bacteroids. A highly upregulated gene in bacteroids, mlr5932 (encoding 1-aminocyclopropane-1-carboxylate deaminase), was disrupted and was confirmed to be involved in nodulation enhancement, indicating that disruption of highly expressed genes is a useful strategy for exploring novel gene functions in symbiosis.Through the symbiotic nitrogen fixation process, bacteria belonging to the family Rhizobiaceae convert atmospheric dinitrogen (N 2 ) to ammonia (NH 3 ), which can be effectively used by host legume plants. The establishment of a rhizobiumlegume symbiosis requires induction of new developmental programs in the partners. The symbiotic interaction begins with signal exchanges of flavonoids and Nod factors (lipochitooligosaccharides) between the two partners (6). In legume nodules, microaerobic environments trigger the rhizobial expression of nitrogen-fixing genes, such as nif and fix, via an oxygen-sensing system (13). However, the establishment of nitrogen-fixing symbiosis probably requires more complex steps triggered by reciprocal signal exchanges that lead to the organogenesis of nodules, differentiation of microsymbionts, and efficacy of nodulation (27). In addition to this symbiotic lifestyle, rhizobia survive in soils with many environment stresses, such as nutrient starvation.Lotus japonicus is a promising model legume for studying molecular interactions between symbiosis partners (20). Schauser et al. (40) first identified the plant regulatory gene nin, which is responsible for the nodule organogenesis program, in this legume. Recently, the receptor-like kinase genes have...
Gene expression profiles during early stages of formation of symbiotic nitrogen-fixing nodules in a model legume Lotus japonicus were analyzed by means of a cDNA array of 18,144 non-redundant expressed sequence tags (ESTs) isolated from L. japonicus. Expression of a total of 1,076 genes was significantly accelerated during the successive stages that represent infection of Mesorhizobium loti, nodule primordium initiation, nodule organogenesis, and the onset of nitrogen fixation. These include 32 nodulin and nodulinhomolog genes as well as a number of genes involved in the catabolism of photosynthates and assimilation of fixed nitrogen that were previously known to be abundantly expressed in root nodules of many legumes. We also identified a large number of novel nodule-specific or enhanced genes, which include genes involved in many cellular processes such as membrane transport, defense responses, phytohormone synthesis and responses, signal transduction, cell wall synthesis, and transcriptional regulation. Notably, our data indicate that the gene expression profile in early steps of Rhizobium-legume interactions is considerably different from that in subsequent stages of nodule development. A number of genes involved in the defense responses to pathogens and other stresses were induced abundantly in the infection process, but their expression was suppressed during subsequent nodule formation. The results provide a comprehensive data source for investigation of molecular mechanisms underlying nodulation and symbiotic nitrogen fixation.
The GCN4 motif, a cis-element that is highly conserved in the promoters of cereal seed storage protein genes, plays a central role in controlling endospermspecific expression. This motif is the recognition site for a basic leucine zipper transcriptional factor that belongs to the group of maize Opaque-2 (O2)-like proteins. Five different basic leucine zipper cDNA clones, designated RISBZ1-5, have been isolated from a rice seed cDNA library. The predicted gene products can be divided into two groups based on their amino acid sequences. Although all the RISBZ proteins are able to interact with the GCN4 motif, only RISBZ1 is capable of activating (more than 100-fold expression) the expression of a reporter gene under a minimal promoter fused to a pentamer of the GCN4 motif. Loss-of-function and gain-of-function experiments using the yeast GAL4 DNA binding domain revealed that the proline-rich N-terminal domain (27 amino acids in length) is responsible for transactivation. The RISBZ1 protein is capable of forming homodimers as well as heterodimers with other RISBZ subunit proteins. RISBZ1 gene expression is restricted to the seed, where it precedes the expression of storage protein genes. When the RISBZ1 promoter was transcriptionally fused to the -glucuronidase reporter gene and the chimeric gene was introduced into rice, the -glucuronidase gene is specifically expressed in aleurone and subaleurone layer of the developing endosperm. These findings suggest that the specific expression of transcriptional activator RISBZ1 gene may determine the endosperm specificity of the storage protein genes.Regulated gene expression is mediated by the combinatorial interactions of multiple cis-elements in the gene's promoter. Specific binding of transcriptional factors to the cognate ciselements constitute a crucial step in transcription initiation and, in turn, on the spatial and temporal expression of genes.Seed storage protein genes provide a model system for the study on the regulatory mechanisms of plant genes (1), since their expression is restricted to a specific tissue and stage during seed development. These specific temporal and spatial expression patterns may be explained as the result of regulatory assemblies of several transcriptional activators that recognize the cis-elements implicated in seed-specific expression. Therefore, to understand such molecular mechanisms, characterization of cis-elements and transcription factors has been performed on many storage protein genes of several crop plants (2,3). Despite numerous studies, the mechanism by which these genes are regulated are poorly understood, since many of the essential cis-elements have not been identified. This is especially true in the case of monocot plants, where many of the promoter analyses of cereal storage protein genes have carried out by transient assays using particle bombardment or heterologous transgenic tobacco system (4 -6). Dissection analyses of promoter using homologous stable transgenic plant have been carried out only on glutelin genes of ...
SummaryThe GCN4 motif is conserved in a number of seed storage protein genes, and promoter fragments containing this motif have been shown to be involved in controlling seed-specific expression of the genes studied. All genes encoding the rice seed storage protein glutelin contain the GCN4 motif at similar sites in their 5Ј flanking regions. Using a stable homologous transgenic system, we have analysed the promoter of the rice glutelin gene GluB-1 and demonstrated that the GCN4 motif functions as an essential cis-element for endosperm-specific gene expression. Moreover, a 21 bp GluB-1 promoter fragment spanning the GCN4 motif, as a multimer, directed GUS gene expression in endosperm of transgenic rice plants, when fused directly to the core promoter (-46) of CaMV 35S. In transiently transfected rice protoplasts, over a hundredfold transactivation was observed from the 21 bp sequence by the bZIP type transcriptional activator Opaque-2 (O2) co-expressed under a CaMV 35S promoter. The transactivation was also evident in transgenic plants containing both O2 and the 21 bp sequence/GUS fusion. The O2-mediated activation requires binding of O2 to an intact GCN4 motif. Our results suggest that a bZIP protein functionally similar to O2 may exist in rice and participate in controlling the endosperm-specific expression of GluB-1 through the GCN4 motif.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.