The local anesthetic lidocaine induces cell death by altering reactive oxygen species (ROS) generation and mitochondrial electron transport chain function. Because hypoxia-inducible factor 1 (HIF-1) is involved in determining oxygen metabolism and mitochondria function, we investigated the involvement of HIF-1 activity in lidocaine-induced cell death. We investigated the role of HIF activation on lidocaine-induced caspase activation and cell death in renal cell-derived RCC4 cells lacking functional von Hippel-Lindau (VHL) protein. We demonstrate that HIF-1 suppressed oxygen consumption and facilitated glycolysis in a pyruvate dehydrogenase kinase-1-dependent manner and that activation of HIF-1 conferred resistance to lidocaine-induced cell death. We also demonstrated that exogenous HIF-1 activation, through HIFα-hydroxylase inhibition or exposure to hypoxic conditions, alleviates lidocaine toxicity by suppressing mitochondria function and generating ROS, not only in RCC4 cells, but also in the neuronal SH-SY5Y cells. In conclusion, we demonstrate that HIF-1 activation due to VHL deletion, treatment with small molecule HIFα-hydroxylase inhibitors, and exposure to hypoxic conditions suppresses mitochondrial respiratory chain function and confers resistance to lidocaine toxicity.Local anesthetics, including lidocaine, affect the intra-and extra-cellular signaling pathways of both neuronal and non-neuronal cells, resulting in long-term modulation of biological functions such as cell growth and death 1 . Although the primary target of lidocaine is voltage-gated sodium channels, the targets and mechanisms in the context of cell growth and death are unknown. Studies indicate that mitochondria are one of the critical targets of lidocaine [2][3][4] . Similarly, we previously reported that reactive oxygen species (ROS) derived from mitochondria play an essential role in lidocaine-induced apoptosis and treatment with the antioxidants N-acetyl cysteine (NAC) and Trolox effectively prevents apoptosis 4 . The mitochondrial oxidative phosphorylation (OXPHOS) system plays a critical role in modulating ATP supply in the human body. Deficits derived from genetic and pharmacologic treatments cause functional disorders and cell death. The OXPHOS machinery consists of four enzyme complexes in the respiratory chain that transport electrons obtained from the oxidation of carbohydrates and fats to molecular oxygen (O 2 ); a fifth enzyme complex uses the energy derived from this process to drive ATP synthesis. O 2 is the electron acceptor, resulting in the production of H 2 O in a process that is catalyzed by complex IV of the mitochondrial electron transport chain (ETC). Because the process is not completely efficient, electron transport to O 2 may occur in complexes I or III, resulting in generation of ROS that can oxidize cellular proteins, lipids, and nucleic acids [5][6][7] . The generated ROS causes cell dysfunction or death when cells are exposed to drugs affecting electron transport in the ETC.
BackgroundThe local anesthetic lidocaine can affect intra- and extra-cellular signaling pathways in both neuronal and non-neuronal cells, resulting in long-term modulation of biological functions, including cell growth and death. Indeed, lidocaine was shown to induce necrosis and apoptosis in vitro. While several studies have suggested that lidocaine-induced apoptosis is mitochondrial pathway-dependent, it remains unclear whether reactive oxygen species (ROS) are involved in this process and whether the observed cell death can be prevented by antioxidant treatment.MethodsThe effects of lidocaine and antioxidants on cell viability and death were evaluated using SH-SY5Y cells, HeLa cells, and HeLa cell derivatives. Cell viability was examined via MTS/PES ([3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium, inner salt]/phenazine ethosulfate) assay. Meanwhile, cell apoptosis and necrosis were evaluated using a cell death detection assay with Annexin V-FITC and PI staining, as well as by assaying for caspase-3/7 and caspase-9 activity, and by measuring the release of lactate dehydrogenase, respectively. Mitochondrial transmembrane potential (ΔΨm) was assessed using the fluorescent probe tetramethylrhodamine ethyl ester.ResultsLidocaine treatment resulted in suppression of the mitochondrial electron transport chain and subsequent attenuation of mitochondrial membrane potential, as well as enhanced ROS production, activation of caspase-3/7 and caspase-9, and induction of apoptosis and necrosis in SH-SY5Y cells in a dose- and time-dependent manner. Likewise, the anesthetics mepivacaine and bupivacaine also induced apoptosis in SH-SY5Y cells. Notably, the antioxidants N-acetyl cysteine (NAC) and Trolox successfully scavenged the mitochondria-derived ROS and suppressed local lidocaine-induced cell death.ConclusionsOur findings demonstrate that the local anesthetics lidocaine, mepivacaine, and bupivacaine inhibited the activity of mitochondria and induced apoptosis and necrosis in a dose-dependent manner. Furthermore, they demonstrate that treatment with the antioxidants NAC, Trolox, and GGA resulted in preservation of mitochondrial voltage and inhibition of apoptosis via suppression of caspase activation.Electronic supplementary materialThe online version of this article (doi:10.1186/s12871-016-0273-3) contains supplementary material, which is available to authorized users.
The intravenous anesthetic propofol (2,6-diisopropylphenol) has been used for the induction and maintenance of anesthesia and sedation in critical patient care. However, the rare but severe complication propofol infusion syndrome (PRIS) can occur, especially in patients receiving high doses of propofol for prolonged periods. In vivo and in vitro evidence suggests that the propofol toxicity is related to the impaired mitochondrial function. However, underlying molecular mechanisms remain unknown. Therefore, we investigated effects of propofol on cell metabolism and death using a series of established cell lines of various origins, including neurons, myocytes, and trans-mitochondrial cybrids, with defined mitochondrial DNA deficits. We demonstrated that supraclinical concentrations of propofol in not less than 50 μM disturbed the mitochondrial function and induced a metabolic switch, from oxidative phosphorylation to glycolysis, by targeting mitochondrial complexes I, II and III. This disturbance in mitochondrial electron transport caused the generation of reactive oxygen species, resulting in apoptosis. We also found that a predisposition to mitochondrial dysfunction, caused by a genetic mutation or pharmacological suppression of the electron transport chain by biguanides such as metformin and phenformin, promoted propofol-induced caspase activation and cell death induced by clinical relevant concentrations of propofol in not more than 25 μM. With further experiments with appropriate in vivo model, it is possible that the processes to constitute the molecular basis of PRIS are identified.
A line of studies strongly suggest that the intravenous anesthetic, propofol, suppresses mitochondrial oxygen metabolism. It is also indicated that propofol induces the cell death in a reactive oxygen species (ROS)-dependent manner. Because hypoxia-inducible factor 1 (HIF-1) is a transcription factor which is involved in cellular metabolic reprogramming by modulating gene expressions of enzymes including glycolysis pathway and oxygen utilization of mitochondria, we examined the functional role of HIF-1 activity in propofol-induced cell death. The role of HIF-1 activity on oxygen and energy metabolisms and propofol-induced cell death and caspase activity was examined in renal cell-derived RCC4 cells: RCC4-EV cells which lack von Hippel-Lindau protein (VHL) protein expression and RCC4-VHL cells, which express exogenous VHL, and in neuronal SH-SY5Y cells. It was demonstrated that HIF-1 is involved in suppressing oxygen consumption and facilitating glycolysis in cells and that the resistance to propofol-induced cell death was established in a HIF-1 activation-dependent manner. It was also demonstrated that HIF-1 activation by treatment with HIFα-hydroxylase inhibitors such as n-propyl gallate and dimethyloxaloylglycine, alleviated the toxic effects of propofol. Thus, the resistance to propofol toxicity was conferred by HIF-1 activation by not only genetic deletion of VHL but also exposure to HIFα-hydroxylase inhibitors.
The intravenous anesthetic propofol (2,6-diisopropylphenol) has been used for the induction and maintenance of anesthesia in operating rooms and for sedation in intensive care units. Although there is no widely accepted definition of propofol infusion syndrome (PRIS), PRIS is defined as the development of metabolic acidosis, rhabdomyolysis, hyperkalemia, hepatomegaly, renal failure, arrhythmia, and progressive cardiac failure. In vitro evidence suggests that PRIS is related to the impaired mitochondrial function. There are indications that preexisting mitochondrial disorders predispose to PRIS. However, the precise molecular mechanisms, including mitochondrial defects and a metabolic conversion by propofol, are largely unknown as yet. To elucidate the underlying cellular and molecular mechanisms of PRIS, we investigated the effects of propofol on the cellular metabolic mode and cell death. We demonstrated that clinically relevant concentrations of propofol, used within a clinically relevant exposure time, suppressed the mitochondrial function, caused the generation of reactive oxygen species, and induced a metabolic switch, from oxidative phosphorylation to glycolysis, by targeting complexes I and III of mitochondria. The data also indicated that a predisposition to mitochondrial dysfunction, caused by a genetic mutation or pharmacological suppression of the electron transport chain by biguanides such as metformin and phenformin, promoted the cell death and caspase activation induced by propofol.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.