Gamma-secretase plays an important role in the development of Alzheimer disease (AD). Gamma-secretase activity is enriched in autophagic vacuoles and it augments amyloid-beta (Abeta) synthesis. Autophagy-lysosomal dysfunction has been implicated in AD, but whether gamma-secretase activity is affected by autophagy remains unclear. Here we report that gamma-secretase activity is enhanced in basal autophagy-disturbed cells through the alpha subunit of eukaryotic translation initiation factor 2 (eIF2alpha) kinase, general control nonderepressible 2 (GCN2). Presenilin-1 (PS1) expression was increased even in the presence of nutrients in autophagy-related 5 knockdown (Atg5KD) human embryonic kidney (HE K293) cells expressing a short hairpin RNA as well as in chloroquine-treated HE K293 cells. However, PS1 expression induction was prevented in GCN2KD and ATF4KD cells. Furthermore, Atg5KD cells showed an increase in Abeta production and Notch1 cleavage. These were reduced by an autophagy inducer, resveratrol. Thus, we conclude that the autophagy-lysosomal system regulates gamma-secretase activity through GCN2.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.