Bone mineral is constituted of biological hydroxyapatite crystals. In developing bone, the mineral crystal matures and the Ca/P ratio increases. However, how an increase in the Ca/P ratio is involved in maturation of the crystal is not known. The relationships among organic components and mineral changes are also unclear. The study was designed to investigate the process of calcification during rat calvarial bone development. Calcification was evaluated by analyzing the atomic distribution and concentration of Ca, P, and C with scanning electron microscopy (SEM)-energy-dispersive X-ray (EDX) spectroscopy and changes in the crystal structure with X-ray diffraction (XRD) and Fourier transform infrared (FTIR) spectroscopy. Histological analysis showed that rat calvarial bone formation started around embryonic day 16. The areas of Ca and P expanded, matching the region of the developing bone matrix, whereas the area of C became localized around bone. X-ray diffraction and FTIR analysis showed that the amorphous-like structure of the minerals at embryonic day 16 gradually transformed into poorly crystalline hydroxyapatite, whereas the proportion of mineral to protein increased until postnatal week 6. FTIR analysis also showed that crystallization of hydroxyapatite started around embryonic day 20, by which time SEM-EDX spectroscopy showed that the Ca/P ratio had increased and the C/Ca and C/P ratios had decreased significantly. The study suggests that the Ca/P molar ratio increases and the proportion of organic components such as proteins of the bone matrix decreases during the early stage of calcification, whereas crystal maturation continues throughout embryonic and postembryonic bone development.
Piezosurgery is an innovative technique widely used for osteotomies in the field of oral and maxillofacial surgery. The surgical technique has been clinically supposed to cut mineralized bone selectively with reducing the risk of damage to adjacent soft tissues. However, none of the previous literature has reported any evidence of scientific experiments to examine performance of the piezoelectric device, i.e. the time required for cutting bone and the effect on soft tissues under the standardized conditions. This study was designed to test the hypothesis that cutting time of the piezoelectric device is longer than that of rotary instruments while the cut surface of bone is smoother and soft tissues are less damaged with piezosurgery under the standardized experimental system. We measured the time for cutting bone and soft tissues of rats with the piezoelectric device and rotary instruments. Damage to soft tissues was examined histologically, and the cut surface of bone was investigated using scanning electron microscopy. Our study demonstrated experimentally that piezosurgery provides a smooth cut bony surface with no damage to soft tissues and takes longer time to cut bone than conventional drillings. We propose that piezosurgery is beneficial for medical safety and usability.
Healing bone is immaturely calcified initially and proceeds calcification gradually, that is, as the bone volume increases, mineral increases in density and matures in quality, while organic components decrease.
We investigated bone repair in sensory-denervated rats, compared with controls, to elucidate the involvement of sensory neurons. Nine-week-old male Wistar rats received subcutaneous injections of capsaicin to denervate sensory neurons. Rats treated with the same amount of vehicle served as controls. A standardized bone defect was created on the parietal bone. We measured the amount of repaired bone with quantitative radiographic analysis and the mRNA expressions of osteocalcin and cathepsin K with real-time polymerase chain reaction (PCR). Quantitative radiographic analysis showed that the standard deviations and coefficients of variation for the amount of repaired bone were much higher in the capsaicin-treated group than in the control group at any time point, which means that larger individual differences in the amount of repaired bone were found in capsaicin-treated rats than controls. Furthermore, radiographs showed radiolucency in pre-existing bone surrounding the standardized defect only in the capsaicin-treated group, and histological observation demonstrated some multinuclear cells corresponding to the radiolucent area. Real-time PCR indicated that there was no significant difference in the mRNA expression levels of osteocalcin and cathepsin K between the control group and the capsaicin-treated group. These results suggest that capsaicin-induced sensory denervation affects the bone defect repair.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.