Zinc is a trace element in the mammalian body, and increasing evidence shows its critical role in bone development and osteoclastogenesis. The relationships between zinc and voltage-gated ion channels have been reported; however, the effects of zinc on membrane potential and the related ion channels remain unknown. In this study, we found that zinc-induced hyperpolarization in RAW264.7 cells (RAW) was promoted by inhibition of hyperpolarization-activated cyclic nucleotide modulated channels (HCNs). In electrophysiological experiments with RAW-derived osteoclasts, HCNs were functional and generated hyperpolarization-activated inward currents (Ih) with properties similar to the Ih recorded in excitable cells such as neurons and cardiomyocytes. Quantitative PCR of HCN subunits HCN1 and HCN4 in RAW cells showed detectable levels of HCN1 mRNA and HCN4 expression was the highest of all four subunits. HCN4 knockdown decreased osteoclastic Ih and promoted osteoclastogenesis in the presence of zinc, but not in the absence of zinc. To determine the effect of membrane hyperpolarization on osteoclastogenesis, we developed a light-controllable membrane potential system in RAW cells by stably expressing the light-driven outward proton pump, Archaerhodopsin3 (Arch). Arch activation by yellow-green light hyperpolarizes the cell membrane. Light-induced hyperpolarization accelerated osteoclast differentiation in the presence of receptor activator of nuclear factor kappa-B ligand (RANKL). Thus, HCN activation reduced the hyperpolarization-related promotion of osteoclast differentiation in the presence of zinc. This study revealed the novel role of HCN and membrane potential in non-excitable osteoclasts.
The bone is the main storage site for Ca and Mg ions in the mammalian body. Although investigations into Ca signaling have progressed rapidly and led to better understanding of bone biology, the Mg signaling pathway and associated molecules remain to be elucidated. Here, we investigated the role of a potential Mg signaling-related lysosomal molecule, two-pore channel subtype 2 (TPC2), in osteoclast differentiation and bone remodeling. Previously, we found that under normal Mg conditions, TPC2 promotes osteoclastogenesis. We observed that under low-Mg conditions, TPC2 inhibited, rather than promoted, the osteoclast differentiation and that the phosphatidylinositol 3,5-bisphosphate (PI(3,5)P) signaling pathway played a role in the TPC2 activation under low-Mg conditions. Furthermore, PI(3,5)P depolarized the membrane potential by increasing the intracellular Na levels. To investigate how membrane depolarization affects osteoclast differentiation, we generated a light-sensitive cell line and developed a system for the light-stimulated depolarization of the membrane potential. The light-induced depolarization inhibited the osteoclast differentiation. We then tested the effect of -inositol supplementation, which increased the PI(3,5)P levels in mice fed a low-Mg diet. The -inositol supplementation rescued the low-Mg diet-induced trabecular bone loss, which was accompanied by the inhibition of osteoclastogenesis. These results indicate that low-Mg-induced osteoclastogenesis involves changes in the role of TPC2, which are mediated through the PI(3,5)P pathway. Our findings also suggest that -inositol consumption might provide beneficial effects in Mg deficiency-induced skeletal diseases.
Synucleinopathies are neurodegenerative disorders including Parkinson disease (PD), dementia with Lewy body (DLB), and multiple system atrophy (MSA) that involve deposits of the protein alpha-synuclein (α-syn) in the brain. The inoculation of α-syn aggregates derived from synucleinopathy or preformed fibrils (PFF) formed in vitro induces misfolding and deposition of endogenous α-syn. This is referred to as prion-like transmission, and the mechanism is still unknown. In this study, we label α-syn PFF with quantum dots and visualize their movement directly in acute slices of brain tissue inoculated with α-syn PFF seeds. Using this system, we find that the trafficking of α-syn seeds is dependent on fast axonal transport and the seed spreading is dependent on endocytosis and neuronal activity. We also observe pharmacological effects on α-syn seed spreading; clinically available drugs including riluzole are effective in reducing the spread of α-syn seeds and this effect is also observed in vivo. Our quantum-dot-labeled α-syn seed assay system combined with in vivo transmission experiment reveals an early phase of transmission, in which uptake and spreading of seeds occur depending on neuronal activity, and a later phase, in which seeds induce the propagation of endogenous misfolded α-syn.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.