Low concentrations of L-lysine and L-lysine-containing-peptides strongly inhibited the growth of axenic strains of 4 species belonging to the genus Microcystis (cyanobacteria). Inhibitory activities decreased in theThe addition of 50 mM of L-lysine to growing cells of axenic strains of M. novacekii TAC20-1 and M. viridis NIES102 resulted in a loss of buoyancy, a decrease in chlorophyll a content and consequent cell lysis. The cells took up most of the L-lysine added to the culture medium of M. viridis NIES-102 in one day. However, the amino acid was released back into the medium with cell lysis 3 days after the addition. Laboratory results were confirmed in experimental ponds outdoors by spraying L-lysine onto natural Microcystis blooms in the summer of 1999 and 2000. The spraying of 50 mM L-lysine caused Microcystis colonies to vanish from the surface water within two days; there was a dramatic change in the color and transparency of the pond surface water. After the immediate disappearance of Microcystis sp., both Euglena sp. and/or Phormidium tenue appeared, the latter becoming the dominant species in the phytoplankton community of the pond. In the experiment in summer 2000, the L-lysine provided to the pond was assayed. The level decreased gradually and L-lysine was not detected in the pond water after 6 days. The mechanisms of growth inhibition by L-lysine and a possible mitigation of Microcystis blooms by the amino acid are discussed.
Summary This study investigated the effects of the consumption of 1% or 2% (v/v) ethanol in drinking water for 12 wk on rats fed a high-fat diet. Body weight gain, food intake, and fluid intake were unaffected by ethanol intake. Adipose tissue weight, and serum glucose and lipids were unaffected. Compared to the control (no ethanol), 1% ethanol intake significantly reduced serum levels of alanine aminotransferase (ALT), lactate dehydrogenase (LDH), and ammonia (p,0.05), whereas 2% ethanol intake did so to a lesser extent. Serum urate was significantly lower in both the 1% and 2% ethanol groups than that in the control group (p,0.05). The results suggest a low dose of ethanol has beneficial effects on liver function and serum urate in rats fed a high-fat diet.
Summary Fatty liver is the most common cause of liver disease, and its prevalence has been increasing globally. Colorectal cancer (CRC) accounts for approximately 10% of all cancers and metastasizes most commonly to the liver. Paget's ‘Seed and Soil’ theory of metastasis proposed that the secondary growth of cancer cells is dependent on the distal organ microenvironment. This implies that the risk of metastasis may change due to changes in the microenvironment of target organs. However, the association between steatosis, fatty change in the liver microenvironment, and liver metastasis has not been clarified. Here, we induced fatty liver conditions in BALB/c mice using a choline‐deficient high‐fat diet with 0.1% methionine (CDAHFD) and then injected the CT26 cells to produce experimental metastasis. The number of metastatic tumours was significantly increased in mice with severe fatty liver as compared to control mice. The average size of metastatic tumours was smaller in mice with moderate fatty liver than in control mice. The stromal components, including cancer‐associated fibroblasts, tumour‐associated macrophages and tumour‐infiltrating lymphocytes, were also examined. Metastatic tumours in fatty liver showed invasive growth patterns without a fibrotic capsule. Compared to control groups, the polarization of macrophages and subtypes of tumour‐infiltrating lymphocytes differed depending on the extent of fatty liver progression. These results indicated that fatty changes in the liver influenced liver metastasis of CRC. Although moderate fatty changes suppress the growth of metastatic tumours in the liver, a severe fatty microenvironment may promote invasion and metastasis through alteration of the tumour microenvironment (TME).
Accumulating epidemiological evidence suggests light to moderate alcohol intake reduces risk of several chronic diseases. However, there is limited information regarding the effects of low alcohol intake in animal studies. This study investigated the effect of low ethanol dosage on senescence-accelerated mouse (SAMP8), an animal model of aging and neurodegenaration. Male SAMP8 mice (11 weeks old) had free access to a commercial stock diet with drinking water containing 0, 1 or 2% (v/v) ethanol for 15 weeks. The total grading score of senescence in the 1%-ethanol group was, in large part, the lowest among the three groups. Analysis using the open-field test revealed a significant elevation (+77%, P<0.05) in the rearing activity (index of seeking behavior) in the 1%-ethanol group, but not in the 2%-ethanol group. In addition, 2% ethanol elevated spontaneous locomotor activity (+75%, P<0.05), whereas 1% ethanol did not. Scrutiny of serum parameters indicated intake of 1% ethanol significantly decreased serum insulin levels (−13%, P<0.05), whereas 2% did not. Intake of 2% ethanol significantly elevated (2.5-fold, P<0.05) S100a8 mRNA (an inflammatory signal) in the brain, but that of 1% ethanol did not. Intriguingly, 1% ethanol intake remarkably elevated (10-fold, P<0.05) mRNA of brain alcohol dehydrogenase 1 (Adh1), which metabolizes lipid-peroxidation products and is involved in the synthesis of retinoic acid, a neuroprotective factor. Of note, 2%-ethanol intake did not exert this effect. Taken together, intake of 1% ethanol is likely to be beneficial for SAMP8 mice.
The effect of low-dose of ethanol consumption on the development of colon cancer is unclear. This study aimed to investigate the effects of low-dose ethanol (0.5%, 1%, and 2% [v/v] ethanol in drinking water) for 28 wk on colon tumor incidence in rats injected with 1,2-dimethylhydrazine. Body weight, fluid and food consumption, and the total numbers of colon adenomas (mild-, moderate-, and severe-grade dysplasia) per rat were unaffected by ethanol consumption. However, the numbers of severe-grade dysplasia were significantly reduced by 1% ethanol compared with the control (0% ethanol; 293%) but not by 0.5% and 2% ethanol. Although the numbers of total adenocarcinomas were unaffected, those of total of adenomas and adenocarcinomas together were significantly reduced by 0.5% and 1% ethanol (239% and 241%, respectively). Intriguingly, real-time PCR assay indicated the abundance of cecal Clostridium leptum (a putative immunosuppressor) was the least in rats received 1% ethanol. Furthermore, 1% ethanol markedly increased colonic mRNA of IL-6, a putative suppressor of regulatory T-cells and cytoprotector. This study provides the first evidence for the potential of 1% ethanol, but not 2% ethanol, to prevent colon tumorigenesis in rats, supporting the J-curve hypothesis of the effect of low-dose alcohol on health. Further, the modulation of C. leptum and expression of IL-6, potentially linking to carcinogenesis, by 1% ethanol may provide an insight into the underlying mechanisms of the anti-colon tumor effect.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.