Tankyrase is a poly (ADP-ribose) polymerase that leads to ubiquitination and degradation of target proteins. Since tankyrase inhibitors suppress the degradation of AXIN protein, a negative regulator of the canonical Wnt pathway, they effectively act as Wnt inhibitors. Small molecule tankyrase inhibitors are being investigated as drug candidates for cancer and fibrotic diseases, in which the Wnt pathways are aberrantly activated. Tankyrase is also reported to degrade the adaptor protein SH3BP2 (SH3 domain-binding protein 2). We have previously shown that SH3BP2 gain-of-function mutation enhances receptor activator of nuclear factor-κB ligand (RANKL)-induced osteoclastogenesis in murine bone marrow-derived macrophages (BMMs). Although the interaction between tankyrase and SH3BP2 has been reported, it is not clear whether and how the inhibition of tankyrase affects bone cells and bone mass. Here, we have demonstrated that tankyrase inhibitors (IWR-1, XAV939, and G007-LK) enhanced RANKL-induced osteoclast formation and function in murine BMMs and human peripheral blood mononuclear cells through the accumulation of SH3BP2, subsequent phosphorylation of SYK, and nuclear translocation of NFATc1. Tankyrase inhibitors also enhanced osteoblast differentiation and maturation, represented by increased expression of osteoblast-associated genes accompanied by the accumulation of SH3BP2 protein and enhanced nuclear translocation of ABL, TAZ, and Runx2 in primary osteoblasts. Most importantly, pharmacological inhibition of tankyrase in mice significantly decreased tibia and lumbar vertebrae bone volumes in association with increased numbers of osteoclasts. Our findings uncover the role of tankyrase inhibition in bone cells and highlight the potential adverse effects of the inhibitor on bone.
SH3 domain-binding protein 2 (SH3BP2) is an adaptor protein that is predominantly expressed in immune cells, and it regulates intracellular signaling. We had previously reported that a gain-of-function mutation in SH3BP2 exacerbates inflammation and bone loss in murine arthritis models. Here, we explored the involvement of SH3BP2 in a lupus model. Sh3bp2 gain-of-function (P416R knock-in; Sh3bp2KI/+) mice and lupus-prone B6.MRL-Faslpr mice were crossed to yield double-mutant (Sh3bp2KI/+Faslpr/lpr) mice. We monitored survival rates and proteinuria up to 48 weeks of age and assessed renal damage and serum anti-double-stranded DNA antibody levels. Additionally, we analyzed B and T cell subsets in lymphoid tissues by flow cytometry and determined the expression of apoptosis-related molecules in lymph nodes. Sh3bp2 gain-of-function mutation alleviated the poor survival rate, proteinuria, and glomerulosclerosis and significantly reduced serum anti-dsDNA antibody levels in Sh3bp2KI/+Faslpr/lpr mice. Additionally, B220+CD4−CD8− T cell population in lymph nodes was decreased in Sh3bp2KI/+Faslpr/lpr mice, which is possibly associated with the observed increase in cleaved caspase-3 and tumor necrosis factor levels. Sh3bp2 gain-of-function mutation ameliorated clinical and immunological phenotypes in lupus-prone mice. Our findings offer better insight into the unique immunopathological roles of SH3BP2 in autoimmune diseases.
Tumor necrosis factor (TNF) receptor-associated periodic syndrome (TRAPS) is an autoinflammatory disease that is caused by heterozygous mutations in the TNFRSF1A gene. Although more than 150 TNFRSF1A mutations have been reported to be associated with TRAPS phenotypes only a few, such as p.Thr79Met (T79M) and cysteine mutations, have been functionally analyzed. We identified two TRAPS patients in one family harboring a novel p.Gly87Val (G87V) mutation in addition to a p.Thr90Ile (T90I) mutation in TNFRSF1A. In this study, we examined the functional features of this novel G87V mutation. In-vitro analyses using mutant TNF receptor 1 (TNF-R1)-over-expressing cells demonstrated that this mutation alters the expression and function of TNF-R1 similar to that with the previously identified pathogenic T79M mutation. Specifically, cell surface expression of the mutant TNF-R1 in transfected cells was inhibited with both G87V and T79M mutations, whereas the T90I mutation did not affect this. Moreover, peripheral blood mononuclear cells (PBMCs) from TRAPS patients harboring the G87V and T90I mutations showed increased mitochondrial reactive oxygen species (ROS). Furthermore, the effect of various Toll-like receptor (TLR) ligands on inflammatory responses was explored, revealing that PBMCs from TRAPS patients are hyper-responsive to TLR-2 and TLR-4 ligands and that interleukin (IL)-8 and granulocyte-macrophage colony-stimulating factor (GM-CSF) are likely to be involved in the pathogenesis of TRAPS. These findings suggest that the newly identified G87V mutation is one of the causative mutations of TRAPS. Our findings based on unique TRAPS-associated mutations provide novel insight for clearer understanding of inflammatory responses, which would be basic findings of developing a new therapeutic and prophylactic approach to TRAPS.
Background: The adaptor protein Src homology 3 domain-binding protein 2 (SH3BP2) is widely expressed in immune cells. It controls intracellular signaling pathways. The present study was undertaken to investigate the role of SH3BP2 in a murine systemic lupus erythematosus model. Methods: For the lupus model, we used Faslpr/lpr mice. Clinical and immunological phenotypes were compared between Faslpr/lpr and SH3BP2-deficient Faslpr/lpr mice. Splenomegaly and renal involvement were assessed. Lymphocyte subsets in the spleen were analyzed by flow cytometry. To examine the role of SH3BP2 in specific cells, B cell-specific SH3BP2-deficient lupus mice were analyzed; T cells and bone marrow-derived dendritic cells and macrophages were analyzed in vitro. Results: SH3BP2 deficiency significantly reduced lupus-like phenotypes, presented as splenomegaly, renal involvement, elevated serum anti-dsDNA antibody, and increased splenic B220+CD4−CD8− T cells. Notably, SH3BP2 deficiency in B cells did not rescue the lupus-like phenotypes. Furthermore, SH3BP2 deficiency did not substantially affect the characteristics of T cells and macrophages in vitro. Interestingly, SH3BP2 deficiency suppressed the differentiation of dendritic cells in vitro and reduced the number of dendritic cells in the spleen of the lupus-prone mice. Conclusions: SH3BP2 deficiency ameliorated lupus-like manifestations. Modulating SH3BP2 expression could thus provide a novel therapeutic approach to autoimmune diseases.
CORRESPONDENCEPredominance of Th2 and regulatory cytokines in the serum of a patient with IgG4-related lymphadenopathy Dear Editor, Immunoglobulin G4 (IgG4)-related lymphadenopathy is a novel clinical entity characterized by numerous IgG4 + plasma cells in lymph nodes and elevated serum IgG4 levels. 1-4 However, patients with hyper-interleukin 6 (IL-6) syndromes such as multicentric Castleman's disease, rheumatoid arthritis, or other immune-mediated inflammatory conditions, frequently show lymph node involvement and often fulfill the diagnostic criteria for IgG4-related lymphadenopathy. 1,2,5 Therefore, diagnosis should not rest on pathological findings alone but be supplemented with additional laboratory analyses. We describe a patient with IgG4-related lymphadenopathy with marked increase in serum levels of Th2 and regulatory cytokines.A 76-year-old man presented with a complaint of generalized fatigue and appetite loss. He was also aware of body weight loss which developed over a few months. The patient had no history of allergy, bronchial asthma, atopic disorder, rhinitis or eczema. Physical examination showed a body temperature of 36.5°C, blood pressure of 130/73 mmHg, and pulse of 93 beats/min. No crackle or wheeze was detected on auscultation. He had multiple palpable lymph nodes in the neck, supraclavicular, axillary and inguinal regions. Laboratory studies showed a C-reactive protein level of 3.77 mg/dL (normal < 0.30), hemoglobin of 11.3 g/ dL, white cell count of 9250/lL (neutrophils 5828/lL, eosinophils 2220/lL [24%]), and platelet count of 14.0 9 10 4 /lL. Serum lactate dehydrogenase level was not elevated at 175 U/L (normal 120-240). Serum total IgG was elevated at 5087 mg/dL (normal 1000-1800), and IgG4 increased at 1140 mg/dL 22.4% of total IgG). No M-protein was detected by immunoelectrophoresis. Serum IgE was markedly elevated at 20 523 IU/mL (normal < 170). Serological tests showed negativity for antinuclear antibodies and rheumatoid factor. Serum concentrations of complements (C3 and C4) were normal. An antigen and antibody combination test for human immunodeficiency virus infection was negative.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.