Dahlias (Dahlia variabilis) exhibit a wide range of flower colours because of accumulation of anthocyanin and other flavonoids in their ray florets. Two lateral mutants were used that spontaneously occurred in ‘Michael J’ (MJW) which has yellow ray florets with orange variegation. MJOr, a bud mutant producing completely orange ray florets, accumulates anthocyanins, flavones, and butein, and MJY, another mutant producing completely yellow ray florets, accumulates flavones and butein. Reverse transcription–PCR analysis showed that expression of chalcone synthase 1 (DvCHS1), flavanone 3-hydroxylase (DvF3H), dihydroflavonol 4-reductase (DvDFR), anthocyanidin synthase (DvANS), and DvIVS encoding a basic helix–loop–helix transcription factor were suppressed, whereas that of chalcone isomerase (DvCHI) and DvCHS2, another CHS with 69% nucleotide identity with DvCHS1, was not suppressed in the yellow ray florets of MJY. A 5.4 kb CACTA superfamily transposable element, transposable element of Dahlia variabilis 1 (Tdv1), was found in the fourth intron of the DvIVS gene of MJW and MJY, and footprints of Tdv1 were detected in the variegated flowers of MJW. It is shown that only one type of DvIVS gene was expressed in MJOr, whereas these plants are likely to have three types of the DvIVS gene. On the basis of these results, the mechanism regulating the formation of orange and yellow ray florets in dahlia is discussed.
For the first time, Chrysanthemum stunt viroid (CSVd) was detected in commercial dahlia bulbs in Japan. CSVd was found in 77.2% of the tested plants (Dahlia spp.). In nucleotide sequence analysis, a CSVd variant was detected consisting of 354 nucleotides, which differed slightly from previously reported CSVd variants.
This study suggests that the prolonged ribonucleotide reductase inhibition by rapidly activated metabolites of MDL 101,731 in part contributes to the potent antitumor activity of this drug against various xenografts.
Nitric oxide (NO) inhibits platelet adhesion and aggregation in vitro. In vivo, chronic inhibition of NO synthesis induces nephrosclerosis and hypertension. Although the pathophysiological mechanism of this glomerular injury has not been clarified, sympathetic nerve activation, a potent procoagulant stimulus elicited by NO inhibition, may play a role. To investigate the role of renal sympathetic nerves in the development of renal injury induced by NG-nitro-L-arginine methyl ester (L-NAME), a specific NO synthesis inhibitor, we examined renal histological changes in four groups of Sprague-Dawley rats: (1) sham operated, vehicle treated; (2) sham operated, L-NAME treated; (3) denervated, vehicle treated, and (4) denervated, L-NAME treated. Following renal denervation or sham operation, L-NAME was administered orally for 4 weeks. Chronic NO inhibition induced platelet aggregation and erythrocyte stasis in the glomerular capillary lumen accompanied by electron-microscopic glomerular injury. Renal denervation abrogated platelet aggregation and glomerular injury in L-NAME-treated animals. Thus, chronic NO synthesis inhibition induced intraglomerular platelet aggregation and glomerular injury, which was attenuated by renal nerve denervation. These results suggest that intrinsic NO may have an antithrombotic effect in the glomeruli and may play a protective role in the progression of glomerular injury possibly mediated by renal sympathetic nerves.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.