SIRT2 is a member of the human sirtuin family of proteins and possesses NAD-dependent lysine deacetylase/deacylase activity. SIRT2 has been implicated in carcinogenesis in various cancers including leukaemia and is considered an attractive target for cancer therapy. Here, we identified NPD11033, a selective small-molecule SIRT2 inhibitor, by a high-throughput screen using the RIKEN NPDepo chemical library. NPD11033 was largely inactive against other sirtuins and zinc-dependent deacetylases. Crystallographic analysis revealed a unique mode of action, in which NPD11033 creates a hydrophobic cavity behind the substrate-binding pocket after a conformational change of the Zn-binding small domain of SIRT2. Furthermore, it forms a hydrogen bond to the active site histidine residue. In addition, NPD11033 inhibited cell growth of human pancreatic cancer PANC-1 cells with a concomitant increase in the acetylation of eukaryotic translation initiation factor 5A, a physiological substrate of SIRT2. Importantly, NPD11033 failed to inhibit defatty-acylase activity of SIRT2, despite its potent inhibitory effect on its deacetylase activity. Thus, NPD11033 will serve as a useful tool for both developing novel anti-cancer agents and elucidating the role of SIRT2 in various cellular biological processes.This article is part of a discussion meeting issue 'Frontiers in epigenetic chemical biology'.
SIRT2 is a member of the human sirtuin family of proteins and possesses nicotinamide adenine dinucleotide (NAD)-dependent lysine deacetylase activity. SIRT2 has been involved in various cellular processes including gene transcription, genome constancy, and the cell cycle. In addition, SIRT2 is deeply implicated in diverse diseases including cancer. In this study, we identified a small molecule inhibitor of SIRT2 with a structure different from known SIRT2 inhibitors by screening from a chemical library. The hit compound showed a high selectivity toward SIRT2 as it only inhibited SIRT2, and not other sirtuins including SIRT1 and SIRT3 or zinc-dependent histone deacetylases (HDACs) including HDAC1 and HDAC6, in vitro. The compound increased the acetylation level of eukaryotic translation initiation factor 5A (eIF5A), a physiological substrate of SIRT2, and reduced cell viability of human breast cancer cells accompanied with a decrease in c-Myc expression. These results suggest that the compound is cellular effective and has potential for development as a therapeutic agent against breast cancers by specific inhibition of SIRT2.Key words SIRT2; c-Myc; breast cancer; high-throughput screening; eukaryotic translation initiation factor 5ASirtuins are a family of nicotinamide adenine dinucleotide (NAD)-dependent lysine deacetylases shown to play biological and physiological roles in diverse cellular processes such as metabolism, transcription, and DNA repair. Mammals have seven sirtuins that display different subcellular localizations and functions. SIRT2 is a predominantly cytosolic protein and was originally reported as a microtubule deacetylase, 1) but further studies have revealed that SIRT2 acts as a deacetylase for histones and a number of non-histone proteins. This wide variety of substrates might be correlated with physiological roles of SIRT2 in diverse biological processes such as the cell cycle, autophagy, and energy metabolism. 2)Many studies suggest an important involvement of SIRT2 in neurodegeneration, inflammation, bacterial infection, and cancer, and that modulation of SIRT2 activity could be novel strategy for therapies against these disorders.3-5) However, pharmacological evidence for SIRT2 as a valid therapeutic target has not yet been shown. Therefore, potent and selective SIRT2 inhibitors are required for initial proof of concept studies. Although there are several reports describing SIRT2 inhibitors to date, 6) specificity and cellular potency of most present SIRT2 inhibitors appear to be insufficient for elucidating in vivo SIRT2 functions. In this regard, development of potent and highly specific SIRT2 inhibitors has been recently achieved. 7,8) Here, we identified a potent and specific SIRT2 inhibitor by high-throughput screening. Because the fundamental structure of the compound is different from that of existing SIRT2 inhibitors, it may serve as a novel class of chemical tool for exploring SIRT2 functions in cells.
Sickle cell disease (SCD) is a heritable disorder caused by β-globin gene mutations. Induction of fetal γ-globin is an established therapeutic strategy. Recently, epigenetic modulators, including G9a inhibitors, have been proposed as therapeutic agents. However, the molecular mechanisms whereby these small molecules reactivate γ-globin remain unclear. Here we report the development of a highly selective and non-genotoxic G9a inhibitor, RK-701. RK-701 treatment induces fetal globin expression both in human erythroid cells and in mice. Using RK-701, we find that BGLT3 long non-coding RNA plays an essential role in γ-globin induction. RK-701 selectively upregulates BGLT3 by inhibiting the recruitment of two major γ-globin repressors in complex with G9a onto the BGLT3 gene locus through CHD4, a component of the NuRD complex. Remarkably, BGLT3 is indispensable for γ-globin induction by not only RK-701 but also hydroxyurea and other inducers. The universal role of BGLT3 in γ-globin induction suggests its importance in SCD treatment.
S-trityl-l-cysteine (STLC) is a well-recognized lead compound known for its anticancer activity owing to its potent inhibitory effect on human mitotic kinesin Eg5. STLC contains two free terminal amino and carboxyl groups that play pivotal roles in binding to the Eg5 pocket. On the other hand, such a zwitterion structure complicates the clinical development of STLC because of the solubility issues. Masking either of these radicals reduces or abolishes STLC activity against Eg5. We recently identified and characterized a new class of nicotinamide adenine dinucleotide-dependent deacetylase isoform 2 of sirtuin protein (SIRT2) inhibitors that can be utilized as cytotoxic agents based on an S-trityl-l-histidine scaffold. Herein, we propose new STLC-derived compounds that possess pronounced SIRT2 inhibition effects. These derivatives contain modified amino and carboxyl groups, which conferred STLC with SIRT2 bioactivity, representing an explicit repurposing approach. Compounds STC4 and STC11 exhibited half maximal inhibitory concentration values of 10.8 ± 1.9 and 9.5 ± 1.2 μM, respectively, against SIRT2. Additionally, introduction of the derivatizations in this study addressed the solubility limitations of free STLC, presumably due to interruption of the zwitterion structure. Therefore, we could obtain drug-like STLC derivatives that work by a new mechanism of action. The new derivatives were designed, synthesized, and their structure was confirmed using different spectroscopic approaches. In vitro and cellular bioassays with various cancer cell lines and in silico molecular docking and solubility calculations of the synthesized compounds demonstrated that they warrant attention for further refinement of their bioactivity.
Two new analogs of halistanol sulfate (1) were isolated from a marine sponge Halichondria sp. collected at Hachijo-jima Island. Structures of these new halistanol sulfates I (2) and J (3) were elucidated by spectral analyses. Compounds 1-3 showed inhibitory activity against SIRT 1-3 with IC ranges of 45.9-67.9, 18.9-21.1 and 21.8-37.5 μM, respectively. X-ray crystallography of the halistanol sulfate (1) and SIRT3 complex clearly indicates that 1 binds to the exosite of SIRT3 that we have discovered in this study.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.