Long-held ideas regarding the evolutionary relationships among animals have recently been upended by sometimes controversial hypotheses based largely on insights from molecular data. These new hypotheses include a clade of moulting animals (Ecdysozoa) and the close relationship of the lophophorates to molluscs and annelids (Lophotrochozoa). Many relationships remain disputed, including those that are required to polarize key features of character evolution, and support for deep nodes is often low. Phylogenomic approaches, which use data from many genes, have shown promise for resolving deep animal relationships, but are hindered by a lack of data from many important groups. Here we report a total of 39.9 Mb of expressed sequence tags from 29 animals belonging to 21 phyla, including 11 phyla previously lacking genomic or expressed-sequence-tag data. Analysed in combination with existing sequences, our data reinforce several previously identified clades that split deeply in the animal tree (including Protostomia, Ecdysozoa and Lophotrochozoa), unambiguously resolve multiple long-standing issues for which there was strong conflicting support in earlier studies with less data (such as velvet worms rather than tardigrades as the sister group of arthropods), and provide molecular support for the monophyly of molluscs, a group long recognized by morphologists. In addition, we find strong support for several new hypotheses. These include a clade that unites annelids (including sipunculans and echiurans) with nemerteans, phoronids and brachiopods, molluscs as sister to that assemblage, and the placement of ctenophores as the earliest diverging extant multicellular animals. A single origin of spiral cleavage (with subsequent losses) is inferred from well-supported nodes. Many relationships between a stable subset of taxa find strong support, and a diminishing number of lineages remain recalcitrant to placement on the tree.
Monoplacophorans are among the rarest members of the phylum Mollusca. Previously only known from fossils since the Cambrian, the first living monoplacophoran was discovered during the famous second Galathea deep-sea expedition. The anatomy of these molluscs shocked the zoological community for presenting serially repeated gills, nephridia, and eight sets of dorsoventral pedal retractor muscles. Seriality of organs in supposedly independent molluscan lineages, i.e., in chitons and the deep-sea living fossil monoplacophorans, was assumed to be a relict of ancestral molluscan segmentation and was commonly accepted to support a direct relationship with annelids. We were able to obtain one specimen of a monoplacophoran Antarctic deep-sea species for molecular study. The first molecular data on monoplacophorans, analyzed together with the largest data set of molluscs ever assembled, clearly illustrate that monoplacophorans and chitons form a clade. This ''Serialia'' concept may revolutionize molluscan systematics and may have important implications for metazoan evolution as it allows for new interpretations for primitive segmentation in molluscs.Antarctica ͉ deep sea ͉ Mollusca ͉ Monoplacophora ͉ phylogeny
Understanding why some organisms reproduce by sexual reproduction while others can reproduce asexually remains an important unsolved problem in evolutionary biology. Simple demography suggests that asexuals should outcompete sexually reproducing organisms, because of their higher intrinsic rate of increase. However, the majority of multicellular organisms have sexual reproduction. The widely accepted explanation for this apparent contradiction is that asexual lineages have a higher extinction rate.A number of models have indicated that population size might play a crucial role in the evolution of asexuality. The strength of processes that lead to extinction of asexual species is reduced when population sizes get very large, so that the long-term advantage of sexual over asexual reproduction may become negligible. Here, we use a comparative approach using scale insects (Coccoidea, Hemiptera) to show that asexuality is indeed more common in species with larger population density and geographic distribution and we also show that asexual species tend to be more polyphagous. We discuss the implication of our findings for previously observed patterns of asexuality in agricultural pests.
K E Y W O R D S :General purpose genotype, parthenogenesis, polyphagy, population size, scale insects.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.