Introduction: Real-time, non-invasive monitoring of thrombus formation in extracorporeal circuits has yet to be achieved. To address the challenges of conventional optical thrombus detection methods requiring large devices that limit detection capacity, we developed a micro-optical thrombus sensor. Methods: The proposed micro-optical thrombus sensor can detect the intensity of light scattered by blood at wavelengths of 660 and 855 nm. Two thrombus sensors were installed on in vitro circuit: one at the rotary blood pump and one at a flow channel. To evaluate the variation in the ratio of incident light intensity at each wavelength of the two sensors, Rfluct (for 660 nm) and Ifluct (for 855 nm) were defined. Using fresh porcine blood as a working fluid, we performed in vitro tests of haematocrit (Hct) and oxygen saturation (SaO2) variation and thrombus detection. Thrombus tests were terminated after Rfluct or Ifluct showed a larger change than the maximum range of those in the Hct and SaO2 variation test. Results: In all three thrombus detection tests, Ifluct showed a larger change than the maximum range of those in the Hct and SaO2 variation test. After the tests, thrombus formation was confirmed in the pump, and there was no thrombus in the flow channel. The results indicate that Ifluct is an effective parameter for identifying the presence of a thrombus. Conclusion: Thrombus detection in an extracorporeal circuit using the developed micro-optical sensors was successfully demonstrated in an in vitro test.
AMPA receptors are responsible for fast excitatory synaptic transmission in the mammalian brain. Post-translational protein S-palmitoylation of AMPA receptor subunits GluA1-4 reversibly regulates synaptic AMPA receptor expression, resulting in long-lasting changes in excitatory synaptic strengths. Our previous studies have shown that GluA1 C-terminal palmitoylation-deficient (GluA1C811S) mice exhibited hyperexcitability in the cerebrum and elevated seizure susceptibility without affecting brain structure or basal synaptic transmission. Moreover, some inhibitory GABAergic synapses-targeting anticonvulsants, such as valproic acid, phenobarbital, and diazepam, had less effect on these AMPA receptor palmitoylation-deficient mutant mice. This work explores pharmacological effect of voltage-gated ion channel-targeted anticonvulsants, phenytoin and trimethadione, on GluA1C811S mice. Similar to GABAergic synapses-targeting anticonvulsants, anticonvulsive effects were also reduced for both sodium channel- and calcium channel-blocking anticonvulsants, which suppress excess excitation. These data strongly suggest that the GluA1C811S mice generally underlie the excessive excitability in response to seizure-inducing stimulation. AMPA receptor palmitoylation site could be a novel target to develop unprecedented type of anticonvulsants and GluA1C811S mice are suitable as a model animal for broadly evaluating pharmacological effectiveness of antiepileptic drugs.
Thrombus formation on biomaterial surfaces with microstructures is complicated and not fully understood. We assumed that the micro-stagnation generated around microstructures is one factor to enhance thrombus formation. In our prediction, the micro-flow around microstructures causes blood components to adhere physically in a low Reynolds number region. The objective of this study is to investigate the micro-flow around three-dimensional micro-geometric structures and the aspects of physical adhesion affected by the micro-flow. Flow simulation and quantitative assessment of adhesion rates around micro-columns was conducted as a basic study. The particle pathlines and average shear rate around a column were calculated through computational fluid dynamics analysis. The simulation showed that low shear rate distribution caused by flow-stagnation is generated around a column, even if it is in micro-flow in a low Reynolds number region. Physical adhesion tests using micro-beads showed that the average adhesion rate around the column was higher than that in the neighboring plane area. A low shear rate region generated by microstructures may increase the potential for adhesion of substances, which enhances thrombus formation even when the scale of flow is of the order of micrometers.
Thrombus formation on biomaterial surfaces with microstructures is complex and not fully understood. We have studied the micro-secondary flow around microstructures that causes components of blood to adhere physically in a low Reynolds number region. The purpose of this study was to investigate the effect of micro-column size on the adhesion phenomena and show a quantitative relationship between the micro-secondary flow and physical adhesion phenomena, considering microstructures of various sizes. The flow simulation and quantitative assessment of adhesion rates around micro-columns was conducted using four sizes of micro-columns. This study also calculated the vectors of micro-secondary flow and average shear rate around a micro-column using a computational fluid dynamics analysis. The simulation showed the micro-secondary flow toward the bottom surface at upstream side and low shear rate distribution generated around a micro-column. Furthermore, physical adhesion tests were conducted using microbeads and a perfusion circuit to examine the size effect of the micro-columns on the physical adhesion. The results showed that the average adhesion rate around the micro-column increases with the associated size increase of the micro-column. Our results indicate that quantification of micro-secondary flow on a material surface with microstructures of several sizes and shapes (such as in a rough surface) is important for the evaluation of the adhesion phenomenon even though the surface roughness value on the material surface is small.
Long-lasting fear-related disorders depend on the excessive retention of traumatic fear memory. We previously showed that the palmitoylation-dependent removal of synaptic α-amino-3-hydroxy-5-methyl-4-isoxazole propionate (AMPA) receptors prevents hyperexcitation-based epileptic seizures and that AMPA receptor palmitoylation maintains neural network stability. In this study, AMPA receptor subunit GluA1 C-terminal palmitoylation-deficient (GluA1C811S) mice were subjected to comprehensive behavioral battery tests to further examine whether the mutation causes other neuropsychiatric disease-like symptoms. The behavioral analyses revealed that palmitoylation-deficiency in GluA1 is responsible for characteristic prolonged contextual fear memory formation, whereas GluA1C811S mice showed no impairment of anxiety-like behaviors at the basal state. In addition, fear generalization gradually increased in these mutant mice without affecting their cued fear. Furthermore, fear extinction training by repeated exposure of mice to conditioned stimuli had little effect on GluA1C811S mice, which is in line with augmentation of synaptic transmission in pyramidal neurons in the basolateral amygdala. In contrast, locomotion, sociability, depression-related behaviors, and spatial learning and memory were unaffected by the GluA1 non-palmitoylation mutation. These results indicate that impairment of AMPA receptor palmitoylation specifically causes posttraumatic stress disorder (PTSD)-like symptoms.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.