The neurotrophin receptors TrkA, TrkB, and TrkC are localized at the surface of the axon terminus and transmit key signals from brain-derived neurotrophic factor (BDNF) for diverse effects on neuronal survival, differentiation, and axon formation. Trk receptors are sorted into axons via the anterograde transport of vesicles and are then inserted into axonal plasma membranes. However, the transport mechanism remains largely unknown. Here, we show that the Slp1/Rab27B/CRMP-2 complex directly links TrkB to Kinesin-1, and that this association is required for the anterograde transport of TrkB-containing vesicles. The cytoplasmic tail of TrkB binds to Slp1 in a Rab27B-dependent manner, and CRMP-2 connects Slp1 to Kinesin-1. Knockdown of these molecules by siRNA reduces the anterograde transport and membrane targeting of TrkB, thereby inhibiting BDNF-induced ERK1/2 phosphorylation in axons. Our data reveal a molecular mechanism for the selective anterograde transport of TrkB in axons and show how the transport is coupled to BDNF signaling.
The polarization of neurons, which mainly includes the differentiation of axons and dendrites, is regulated by cell-autonomous and non-cell-autonomous factors. In the developing central nervous system, neuronal development occurs in a heterogeneous environment that also comprises extracellular matrices, radial glial cells, and neurons. Although many cell-autonomous factors that affect neuronal polarization have been identified, the microenvironmental cues involved in neuronal polarization remain largely unknown. Here, we show that neuronal polarization occurs in a microenvironment in the lower intermediate zone, where the cell adhesion molecule transient axonal glycoprotein-1 (TAG-1) is expressed in cortical efferent axons. The immature neurites of multipolar cells closely contact TAG-1-positive axons and generate axons. Inhibition of TAG-1-mediated cell-to-cell interaction or its downstream kinase Lyn impairs neuronal polarization. These results show that the TAG-1-mediated cell-to-cell interaction between the unpolarized multipolar cells and the pioneering axons regulates the polarization of multipolar cells partly through Lyn kinase and Rac1.
Collapsibility of the active pharynx, where active contraction of the upper airway muscles is evident, was previously reported to be higher in children with obstructive sleep apnea (OSA) than in those with primary snoring during sleep. Contribution of neuromuscular and anatomic factors to the increased collapsibility, however, was not estimated. We therefore evaluated collapsibility of the passive pharynx, in which upper airway muscle activities were eliminated. Our aim in the present study was to test the hypothesis that children with sleep-disordered breathing (SDB) have a structurally narrowed and a more collapsible pharynx compared with normal children. The static pressure/area relationship of the passive pharynx was endoscopically quantified in 14 children with SDB and in 13 normal children under general anesthesia with complete paralysis. The majority of children with SDB primarily closed their airways at levels of enlarged adenoids and tonsils with positive closing pressure (Pclose) (3.5+/-4.3 cm H2O), whereas half of the normal children closed their airways at the soft palate edges and the other half at the tongue bases with subatmospheric Pclose (-7.4+/-4.9 cm H2O). Cross-sectional area of the narrowest segment was significantly smaller in SDB children than in normal children. Interestingly, collapsibility of the retropalatal and retroglossal segments significantly increased in SDB children, compared with the normal subjects. We conclude that anatomic factors play a significant role in the pathogenesis of pediatric OSA and that predisposing structural abnormalities of the entire pharynx are likely to contribute to manifestation of OSA in addition to enlarged adenoids and tonsils.
Summary Temporomandibular disorders (TMD) are common chronic musculoskeletal pain conditions among orofacial pain. Painful TMD condition such as myalgia and arthralgia can be managed by exercise therapy. However, as it is hard to access actual effect of each modality that is included in an exercise therapy programme due to multiple choice of the management modality, their efficacy remains controversial. Therefore, this review focused on the effects of exercise therapy for the management of painful TMD. The aims of this review were to summarise the effects of exercise therapy for major symptoms of painful TMD and to establish a guideline for the management of painful TMD, resulting in higher quality and reliability of dental treatment. In this review, exercise modalities are clearly defined as follows: mobilisation exercise, muscle strengthening exercise (resistance training), coordination exercise and postural exercise. Furthermore, pain intensity and range of movements were focused as outcome parameters in this review. Mobilisation exercise including manual therapy, passive jaw mobilisation with oral appliances and voluntary jaw exercise appeared to be a promising option for painful TMD conditions such as myalgia and arthralgia. This review addressed not only the effects of exercise therapy on various clinical conditions of painful TMD shown in the past, but also an urgent need for consensus among dentists and clinicians in terms of the management of each condition, as well as terminology.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.