PURPOSE Patients with non-Hodgkin lymphoma including chronic lymphocytic leukemia (NHL/CLL) are at higher risk of severe SARS-CoV-2 infection. We investigated vaccine-induced antibody responses in patients with NHL/CLL against the original SARS-CoV-2 strain and variants of concern including B.1.167.2 (Delta) and B.1.1.529 (Omicron). MATERIALS AND METHODS Blood from 121 patients with NHL/CLL receiving two doses of vaccine were collected longitudinally. Antibody binding against the full-length spike protein, the receptor-binding, and N-terminal domains of the original strain and of variants was measured using a multiplex assay. Live-virus neutralization against Delta, Omicron, and the early WA1/2020 strains was measured using a focus reduction neutralization test. B cells were measured by flow cytometry. Correlation between vaccine response and clinical factors was determined. RESULTS Mean anti-SARS-CoV-2 spike immunoglobulin G–binding titers were 85-fold lower in patients with NHL/CLL compared with healthy controls, with seroconversion occurring in only 67% of patients. Neutralization titers were also lower and correlated with binding titers ( P < .0001). Treatment with anti-CD20-directed therapies within 1 year resulted in 136-fold lower binding titers. Peripheral blood B-cell count also correlated with vaccine response. At 3 months from last anti-CD20-directed therapy, B-cell count ≥ 4.31/μL blood around the time of vaccination predicted response (OR 7.46, P = .04). Antibody responses also correlated with age. Importantly, neutralization titers against Delta and Omicron were reduced six- and 42-fold, respectively, with 67% of patients seropositive for WA1/2020 exhibiting seronegativity for Omicron. CONCLUSION Antibody binding and live-virus neutralization against SARS-CoV-2 and its variants of concern including Delta and Omicron were substantially lower in patients with NHL/CLL compared with healthy vaccinees. Anti-CD20-directed therapy < 1 year before vaccination and number of circulating B cells strongly predict vaccine response.
PURPOSE To examine COVID-19 mRNA vaccine–induced binding and neutralizing antibody responses in patients with non–small-cell lung cancer (NSCLC) to SARS-CoV-2 614D (wild type [WT]) strain and variants of concern after the primary 2-dose and booster vaccination. METHODS Eighty-two patients with NSCLC and 53 healthy volunteers who received SARS-CoV-2 mRNA vaccines were included in the study. Blood was collected longitudinally, and SARS-CoV-2–specific binding and neutralizing antibody responses were evaluated by Meso Scale Discovery assay and live virus Focus Reduction Neutralization Assay, respectively. RESULTS A majority of patients with NSCLC generated binding and neutralizing antibody titers comparable with the healthy vaccinees after mRNA vaccination, but a subset of patients with NSCLC (25%) made poor responses, resulting in overall lower (six- to seven-fold) titers compared with the healthy cohort ( P = < .0001). Although patients age > 70 years had lower immunoglobulin G titers ( P = < .01), patients receiving programmed death-1 monotherapy, chemotherapy, or a combination of both did not have a significant impact on the antibody response. Neutralizing antibody titers to the B.1.617.2 (Delta), B.1.351 (Beta), and in particular, B.1.1.529 (Omicron) variants were significantly lower ( P = < .0001) compared with the 614D (WT) strain. Booster vaccination led to a significant increase ( P = .0001) in the binding and neutralizing antibody titers to the WT and Omicron variant. However, 2-4 months after the booster, we observed a five- to seven-fold decrease in neutralizing titers to WT and Omicron viruses. CONCLUSION A subset of patients with NSCLC responded poorly to the SARS-CoV-2 mRNA vaccination and had low neutralizing antibodies to the B.1.1.529 Omicron variant. Booster vaccination increased binding and neutralizing antibody titers to Omicron, but antibody titers declined after 3 months. These data highlight the concern for patients with cancer given the rapid spread of SARS-CoV-2 Omicron variant.
BackgroundThe yeast Saccharomyces boulardii is used worldwide as a probiotic to alleviate the effects of several gastrointestinal diseases and control antibiotics-associated diarrhea. While many studies report the probiotic effects of S. boulardii, no genome information for this yeast is currently available in the public domain.ResultsWe report the 11.4 Mbp draft genome of this probiotic yeast. The draft genome was obtained by assembling Roche 454 FLX + shotgun data into 194 contigs with an N50 of 251 Kbp. We compare our draft genome with all other Saccharomyces cerevisiae genomes.ConclusionsOur analysis confirms the close similarity of S. boulardii to S. cerevisiae strains and provides a framework to understand the probiotic effects of this yeast, which exhibits unique physiological and metabolic properties.
Various factors including diet, age, geography, culture and socio-economic status have a role in determining the composition of the human gut microbiota. The human gut microbial composition is known to be altered in disease conditions. Considering the important role of the gut microbiome in maintaining homeostasis and overall health, it is important to understand the microbial diversity and the functional metagenome of the healthy gut. Here, we characterized the microbiota of 31 fecal samples from healthy individuals of Indian ethnic tribes from Ladakh, Jaisalmer and Khargone by shotgun metagenomic sequencing. Sequence analysis revealed that Bifidobacterium and Prevotella were the key microbes contributing to the differences among Jaisalmer, Khargone and Ladakh samples at the genus level. Our correlation network study identified carbohydrate-active enzymes and carbohydrate binding proteins that are associated with specific genera in the different Indian geographical regions studied. Network analysis of carbohydrate-active enzymes and genus abundance revealed that the presence of different carbohydrate-active enzymes is driven by differential abundance of genera. The correlation networks were different in the different geographical regions, and these interactions suggest the role of less abundant genera in shaping the gut environment. We compared our data with samples from different countries and found significant differences in taxonomic composition and abundance of carbohydrateactive enzymes in the gut microbiota as compared to the other countries. OPEN ACCESS Citation: Kaur K, Khatri I, Akhtar A, Subramanian S, Ramya TNC (2020) Metagenomics analysis reveals features unique to Indian distal gut microbiota. PLoS ONE 15(4): e0231197. https://doi.org/ 10."Man as a superorganism: Understanding the Human Microbiome (HUM-CSIR-BSC0119)". Funder URL: https://www. csir.res.in/ The funders had no role in study design, immunomodulation [13], defense against pathogens [14], nutrient and energy harvest, and metabolism [15][16][17][18]. Considering the important role of the gut microbiome in maintaining homeostasis, it is important to understand the microbial diversity and the functional metagenome of the healthy gut.Despite the fact that significant intra-and inter-individual variations exist in the taxonomic composition of microbial communities in the human distal gut, there are several initiatives aiming to find common patterns among two or more different groups of interest. Identifying the differences and similarities among the healthy gut microbiota between two geographies has been important to understand the impact of the environment and diet. With this aim, several metagenomics initiatives have been taken in several regions across the world such as China [7,18], Russia [19], Europe [20,21], USA [22], Venezuela [1], Africa [23], Ireland [2], Italy [24], Japan [25] and Korea [26]. Several studies have previously been performed on Indian subjects, too, with their wide focus on healthy and malnourished children [27,28], le...
Purpose: We investigated SARS-CoV-2 mRNA vaccine-induced binding and live-virus neutralizing antibody response in NSCLC patients to the SARS-CoV-2 wild type strain and the emerging Delta and Omicron variants. Methods: 82 NSCLC patients and 53 healthy adult volunteers who received SARS-CoV-2 mRNA vaccines were included in the study. Blood was collected longitudinally, and SARS-CoV-2-specific binding and live-virus neutralization response to 614D (WT), B.1.617.2 (Delta), B.1.351 (Beta) and B.1.1.529 (Omicron) variants were evaluated by Meso Scale Discovery (MSD) assay and Focus Reduction Neutralization Assay (FRNT) respectively. We determined the longevity and persistence of vaccine-induced antibody response in NSCLC patients. The effect of vaccine-type, age, gender, race and cancer therapy on the antibody response was evaluated. Results: Binding antibody titer to the mRNA vaccines were lower in the NSCLC patients compared to the healthy volunteers (P=<0.0001). More importantly, NSCLC patients had reduced live-virus neutralizing activity compared to the healthy vaccinees (P=<0.0001). Spike and RBD-specific binding IgG titers peaked after a week following the second vaccine dose and declined after six months (P=<0.001). While patients >70 years had lower IgG titers (P=<0.01), patients receiving either PD-1 monotherapy, chemotherapy or a combination of both did not have a significant impact on the antibody response. Binding antibody titers to the Delta and Beta variants were lower compared to the WT strain (P=<0.0001). Importantly, we observed significantly lower FRNT50 titers to Delta (6-fold), and Omicron (79-fold) variants (P=<0.0001) in NSCLC patients. Conclusions: Binding and live-virus neutralizing antibody titers to SARS-CoV-2 mRNA vaccines in NSCLC patients were lower than the healthy vaccinees, with significantly lower live-virus neutralization of B.1.617.2 (Delta), and more importantly, the B.1.1.529 (Omicron) variant compared to the wild-type strain. These data highlight the concern for cancer patients given the rapid spread of SARS-CoV-2 Omicron variant.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.