This paper investigates feature selection method using two hybrid approaches based on artificial Bee colony ABC with Particle Swarm PSO algorithm (ABC-PSO) and ABC with genetic algorithm (ABC-GA). To achieve balance between exploration and exploitation a novel improvement is integrated in ABC algorithm. In this work, particle swarm PSO contribute in ABC during employed bees, and GA mutation operators are applied in Onlooker phase and Scout phase. It has been found that the proposed method hybrid ABC-GA method is competitive than exiting methods (GA, PSO, ABC) for finding minimal number of features and classifying WDBC, colon, hepatitis, DLBCL, lung cancer dataset. Experimental results are carried out on UCI data repository and show the effectiveness of mutation operators in term of accuracy and particle swarm for less size of features.
: The medical diagnostic process works very similarly to the Case Based Reasoning (CBR) cycle scheme. CBR is a problem solving approach based on the reuse of past experiences called cases. To improve the performance of the retrieval phase, a Random Forest (RF) model is proposed, in this respect we used this algorithm in three different ways (three different algorithms): Classic Random Forest (CRF) algorithm, Random Forest with Feature Selection (RF_FS) algorithm where we selected the most important attributes and deleted the less important ones and Weighted Random Forest (WRF) algorithm where we weighted the most important attributes by giving them more weight. We did this by multiplying the entropy with the weight corresponding to each attribute.We tested our three algorithms CRF, RF_FS and WRF with CBR on data from 11 medical databases and compared the results they produced. We found that WRF and RF_FS give better results than CRF. The experiemental results show the performance and robustess of the proposed approach.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.