BackgroundStudies have demonstrated the beneficial effect of palmitoleic acid (C16:1 n-7) on reducing muscle insulin resistance and preventing beta-cell apoptosis. However, the effect of palmitoleic acid on diabetes remains to be elucidated. The aim of this study was to examine the antidiabetic effect of palmitoleic acid in KK-Ay mice, a spontaneous model for studies of obese type 2 diabetes with low insulin sensitivity.MethodsKK-Ay mice were orally administered vehicle, 300 mg/kg of palmitoleic acid, or 300 mg/kg of palmitic acid (C16:0) on a daily basis for 4 weeks.ResultsPalmitoleic acid reduced body weight increase, ameliorated the development of hyperglycemia and hypertriglyceridemia, and improved insulin sensitivity. In addition, hepatic characteristics were significantly affected, as weight of the liver and hepatic triglyceride levels were lower in the palmitoleic acid group when compared to the control (vehicle and palmitic acid groups). Oil red O staining clearly indicated reduced hepatic lipid accumulation in response to palmitoleic acid. Furthermore, palmitoleic acid down-regulated mRNA expressions of proinflammatory adipocytokine genes (TNFα and resistin) in white adipose tissue and lipogenic genes (SREBP-1, FAS, and SCD-1) in liver.ConclusionsThese results suggest that palmitoleic acid improves hyperglycemia and hypertriglyceridemia by increasing insulin sensitivity, in part owing to suppressing proinflammatory gene expressions and improving hepatic lipid metabolism in diabetic mice.
The aim of this study was to elucidate the effect of fish-oil-derived monounsaturated fatty acids (MUFAs) containing large amounts of C20:1 and C22:1 isomers on metabolic disorders in mice. Male C57BL/6J mice were fed a 32% lard diet (control) or a 27% lard plus 5% saury-oil-derived MUFA diet for 6 weeks. Dietary MUFA improved insulin resistance and alleviated metabolic syndrome risk factors by reducing blood glucose and lipids. These favorable changes may be attributed to an improved adipocytokine profile. MUFA ingestion resulted in favorable changes in mRNA expression of genes involved in glucose/lipid metabolism (SCD-1, CPT1a, UCPs, and CS) as well as inflammation (MAC1, MMP3, and SAA3) and alterations in fatty acid composition. Our data suggest that marine MUFA improved glucose/lipid homeostasis and hindered the development of metabolic syndrome in obese mice.
We investigated the effect of saury oil on the alleviation of metabolic syndrome in mice. Saury oil contains 18% (w/w/) n-3 polyunsaturated fatty acids (n-3 PUFA) and 35% (w/w) monounsaturated fatty acids (MUFA). Diabetic KKAy mice were fed a 10% soybean oil diet (control) or a 10% saury oil diet for 4 weeks, and diet-induced obese C57BL/6J mice were fed a high-fat diet containing 32% lard (control) or 22% lard plus 10% saury oil for 6 weeks. After the intervention periods, the levels of glucose, insulin and lipids in plasma had decreased significantly for the saury oil diet group, and insulin sensitivity had improved. These favorable changes may be attributed to the increased adiponectin and decreased TNFα and resistin levels in plasma. The saury oil diet also resulted in downregulated expression of the lipogenic genes (SREBP-1, SCD-1, FAS, and ACC) as well as upregulation of the fatty acid oxidative gene, CPT-1, and the energy expenditure-related genes (PGC1α and PGC1β) in white adipose tissue for the diet-induced obese C57BL/6J mice. An increase in n-3 PUFA levels and the concomitant decrease in the n-6/n-3 PUFA level ratio in serum, white adipose tissue, and liver with a saury oil diet are likely to be involved in the beneficial changes to the metabolic indicators. MUFA may also play a positive role in remodeling lipid composition. Based on these mice models, our results suggest a potential use for saury oil for improving metabolic abnormalities.
BackgroundHyperlipidemia associated with obesity is closely related to the development of atherosclerosis. Both n-3 polyunsaturated fatty acids (PUFAs) and long-chain monounsaturated fatty acids (MUFAs; i.e., C20:1 and C22:1 isomers) supplementation modulate risk factors for metabolic syndrome via multiple mechanisms, including the restoration of impaired lipid metabolism. We therefore examined the effects of pollock oil, which contains a considerable amount of n-3 PUFAs as well as long-chain MUFAs, on plasma hyperlipidemia and hepatic steatosis in diet-induced obese mice.MethodsMale C57BL/6J mice (24-26 g) were divided into two groups (n = 10/group) and were fed a high-fat diet containing 32% lard (control group) or 17% lard plus 15% pollock oil (experimental group) for 6 weeks. For both groups, fat comprised 60% of the total caloric intake.ResultsAlthough body and liver masses for the two groups did not differ significantly, hepatic lipids concentrations (triglycerides and total cholesterols) were lower (P < 0.05) after pollock oil ingestion. After 2 weeks on the specified diets, plasma lipid levels (total cholesterol, LDL cholesterol, and triglycerides) significantly decreased (P < 0.05) in the experimental group compared with the control group, although plasma HDL cholesterol levels did not differ. At the end of 6 weeks, plasma adiponectin levels increased (P < 0.05), whereas plasma resistin and leptin levels decreased (P < 0.05) in the experimental mice. Increased levels of long-chain MUFAs and n-3 PUFAs in plasma, liver and adipose tissue by ingesting pollock oil were possibly correlated to these favorable changes. Expression of hepatic genes involved in cholesterol metabolism (SREBP2, HMGCR, and ApoB) and lipogenesis (SREPB1c, SCD-1, FAS, and Acacα) was suppressed in the experimental group, and may have favorably affected hyperlipidemia and hepatic steatosis induced by the high-fat diet.ConclusionsWe demonstrated that pollock oil supplementation effectively improved hyperlipidemia, attenuated hepatic steatosis, and downregulated the express of hepatic genes involved in cholesterol and lipid metabolism in mice with diet-induced obesity.
The ciliated protozoan Cryptocaryon irritans, a parasite of seawater fishes, was found to express an antigen that elicits antibodies in rabbits and tiger puffer (Takifugu ruburipes). Serum from rabbits and fish immunized with theronts had agglutination/immobilization activity against theronts in vitro; fish serum antibody levels (measured by enzyme-linked immunosorbent assays: ELISA) correlated with this activity. Anti-theront antibody levels in fish were significantly higher in the immunized group as compared with control fish at 2 weeks after booster immunization (injection of bovine serum albumin; Student's t-test, P<0.01). Biochemical analyses indicated that a Triton X-114-soluble 32 kDa theront integral membrane protein may be the agglutination/immobilization antigen. Indirect immunofluorescence staining of theronts suggested that this 32 kDa antigen was expressed on the surface of cilia. The full-length 32 kDa antigen cDNA contained 1147 basepairs, encoding a 328-amino acid protein including hydrophobic N- and C-termini. As with Tetrahymena and Paramecium spp., TAA and TAG appear to be used as glutamine codons in the 32 kDa antigen gene.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.