Recently, Li and Yamazaki proposed a new class of infinite-dimensional algebras, quiver Yangian, which generalizes the affine Yangian $$ \mathfrak{gl} $$ gl 1. The characteristic feature of the algebra is the action on BPS states for non-compact toric Calabi-Yau threefolds, which are in one-to-one correspondence with the crystal melting models. These algebras can be bootstrapped from the action on the crystals and have various truncations.In this paper, we propose a q-deformed version of the quiver Yangian, referred to as the quiver quantum toroidal algebra (QQTA). We examine some of the consistency conditions of the algebra. In particular, we show that QQTA is a Hopf superalgebra with a formal super coproduct, like known quantum toroidal algebras. QQTA contains an extra central charge C. When it is trivial (C = 1), QQTA has a representation acting on the three-dimensional crystals, like Li-Yamazaki’s quiver Yangian. While we focus on the toric Calabi-Yau threefolds without compact 4-cycles, our analysis can likely be generalized to all toric Calabi-Yau threefolds.
Recently, Gaiotto and Rapcak proposed a generalization of WN algebra by considering the symmetry at the corner of the brane intersection (corner vertex operator algebra). The algebra, denoted as YL,M,N, is characterized by three non-negative integers L, M, N. It has a manifest triality automorphism which interchanges L, M, N, and can be obtained as a reduction of W1+∞ algebra with a “pit” in the plane partition representation. Later, Prochazka and Rapcak proposed a representation of YL,M,N in terms of L + M + N free bosons by a generalization of Miura transformation, where they use the fractional power differential operators.In this paper, we derive a q-deformation of the Miura transformation. It gives a free field representation for q-deformed YL,M,N, which is obtained as a reduction of the quantum toroidal algebra. We find that the q-deformed version has a “simpler” structure than the original one because of the Miki duality in the quantum toroidal algebra. For instance, one can find a direct correspondence between the operators obtained by the Miura transformation and those of the quantum toroidal algebra. Furthermore, we can show that the both algebras share the same screening operators.
We test in (A n−1 , A m−1 ) Argyres-Douglas theories with gcd(n, m) = 1 the proposal of Song's in [1] that the Macdonald index gives a refined character of the dual chiral algebra. In particular, we extend the analysis to higher rank theories and Macdonald indices with surface operator, via the TQFT picture and Gaiotto-Rastelli-Razamat's Higgsing method. We establish the prescription for refined characters in higher rank minimal models from the dual (A n−1 , A m−1 ) theories in the large m limit, and then provide evidence for Song's proposal to hold (at least) in some simple modules (including the vacuum module) at finite m. We also discuss some observed mismatch in our approach.
Recently, new classes of infinite-dimensional algebras, quiver Yangian (QY) and shifted QY, were introduced, and they act on BPS states for non-compact toric Calabi-Yau threefolds. In particular, shifted QY acts on general subcrystals of the original BPS crystal. A trigonometric deformation called quiver quantum toroidal algebra (QQTA) was also proposed and shown to act on the same BPS crystal. Unlike QY, QQTA has a formal Hopf superalgebra structure which is useful in deriving representations.In this paper, we define the shifted QQTA and study a class of their representations. We define 1d and 2d subcrystals of the original 3d crystal by removing a few arrows from the original quiver diagram and show how the shifted QQTA acts on them. We construct the 2d crystal representations from the 1d crystal representations by utilizing a generalized coproduct acting on different shifted QQTAs. We provide a detailed derivation of subcrystal representations of ℂ3, ℂ3/ℤn(n ≥ 2), conifold, suspended pinch point, and ℂ3/(ℤ2× ℤ2).
Free fermion system is the simplest quantum field theory which has the symmetry of Ding-Iohara-Miki algebra (DIM). DIM has S-duality symmetry, known as Miki automorphism which defines the transformation of generators. In this note, we introduce the second set of the fermionic basis (S-dual basis) which implement the duality transformation. It may be interpreted as the Fourier dual of the standard basis, and the inner product between the standard and the S-dual ones is proportional to the Hopf link invariant. We also rewrite the general topological vertex in the form of Awata-Feigin-Shiraishi intertwiner and show that it becomes more symmetric for the duality transformation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.