Biodegradation is a key property for biodegradable polymer-based tissue scaffolds because it can provide suitable space for cell growth as well as tailored sustainability depending on their role. Ultrashort pulsed lasers have been widely used for the precise processing of optically transparent materials, including biodegradable polymers. Here, we demonstrated the change in the biodegradation of a poly(lactic-co-glycolic acid) (PLGA) following irradiation with femtosecond laser pulses at different wavelengths. Microscopic observation as well as water absorption and mass change measurement revealed that the biodegradation of the PLGA varied significantly depending on the laser wavelength. There was a significant acceleration of the degradation rate upon 400 nm-laser irradiation, whereas 800 nm-laser irradiation did not induce a comparable degree of change. The X-ray photoelectron spectroscopy analysis indicated that laser pulses at the shorter wavelength dissociated the chemical bonds effectively, resulting in a higher degradation rate at an early stage of degradation.
During influenza epidemics, Japanese clinicians routinely conduct rapid influenza diagnostic tests (RIDTs) in patients with influenza-like illness, and patients with positive test results are treated with anti-influenza drugs within 48 h after the onset of illness. We assessed the vaccine effectiveness (VE) of inactivated influenza vaccine (IIV) in children (6 months–15 years old, N = 4243), using a test-negative case-control design based on the results of RIDTs in the 2018/19 season. The VE against influenza A(H1N1)pdm and A(H3N2) was analyzed separately using an RIDT kit specifically for detecting A(H1N1)pdm09. The adjusted VE against combined influenza A (H1N1pdm and H3N2) and against A(H1N1)pdm09 was 39% (95% confidence interval [CI], 30%–46%) and 74% (95% CI, 39%–89%), respectively. By contrast, the VE against non-A(H1N1)pdm09 influenza A (presumed to be H3N2) was very low at 7%. The adjusted VE for preventing hospitalization was 56% (95% CI, 16%–77%) against influenza A. The VE against A(H1N1)pdm09 was consistently high in our studies. By contrast, the VE against A(H3N2) was low not only in adults but also in children in the 2018/19 season.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.