Since the acquisition of digital images, scientific studies on these images have been making significant progress. The sizes and quality of the images obtained have increased greatly from past to present. However, when the information contained in these images remains on the visible band (RGB band), the results that can be obtained are limited. For this reason, the need to acquire images with more broadband information has emerged. Hyperspectral Imaging (HSI) method has been developed to meet this need. A hyperspectral image consists of reflections in hundreds of different bands of the electromagnetic spectrum. Each object exhibits a unique reflection characteristic. Due to this characteristic, objects can be separated from each other using hyperspectral imaging. Hyperspectral cameras are used to obtain this image. The information it contains is much more than an RGB image, so deeper results can be achieved than the human eye can see. In this respect, it has great importance. Artificial intelligence technologies are used extensively in image processing as well as in many other fields. As a result, classification studies are carried out on hyperspectral images with machine learning methods. Machine learning methods can be considered as the most general terms of supervised machine learning, unsupervised machine learning, and reinforced machine learning. Supervised machine learning methods mainly: Support Vector Machines(SVM), k-Nearest Neighborhood(k-NN), Decision Trees, Random Forest, Linear Regression and Neural Networks(NN). Neural networks are also used as an unsupervised learning method. However, Deep Learning, a specialized method of artificial neural networks, is highly preferred due to its unique structure. Artificial intelligence methods have been widely used in recent years, especially for the classification of hyperspectral images containing complex information. Considering the studies, it is seen that especially deep learning is used intensively. At this point, studies have revealed different types of models. The number of models and their successes are increasing day by day.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.