There is increasing evidence that PVT1 has oncogenic properties and regulates proliferation and growth of many cancers. Themolecular mechanisms of action of PVT1 are mediated, in part, by microRNAs (miRNAs). However, some well-established transcription factors involved in cancer cell proliferation share a common thread of microRNA associations with PVT1. Furthermore, these microRNAs are also involved in mechanisms that lead to the development of drug resistance in cancer cells. While several microRNAs have been implicated directly in PVT1-mediated tumorigenesis, significant steps need to be taken to elucidate these important relationships. We synthesize the current knowledge of the miRNAs and associated genes by which PVT1 contributes to tumorigenesis. Overall, the trend suggests a negative correlation of microRNA expression with PVT1. It is clear that future studies involving PVT1 should be carried out in conjunction with microRNA analysis and should include large scale lncRNA-miRNA-mRNA network analysis. Likewise, the relationship between established transcription factors such as p53 and MYC , and processes like epithelial-mesenchymal transition may offer valuable insight into the yet unknown mechanisms of PVTI-mediated cancer progression via microRNA-dependent signaling networks.
Prostate cancer (PCa) is the most common non-cutaneous cancer and second leading cause of cancer-related death for men in the United States. The nonprotein coding gene locus plasmacytoma variant translocation 1 (PVT1) is located at 8q24 and is dysregulated in different cancers. PVT1 gives rise to several alternatively spliced transcripts and microRNAs. There are at least twelve exons of PVT1, which make separate transcripts, and likely have different functions. Here, we demonstrate that PVT1 exon 9 is significantly overexpressed in PCa tissues in comparison to normal prostate tissues. Both transient and stable overexpression of PVT1 exon 9 significantly induced greater prostate epithelial cell migration, as well as increased proliferation and corresponding proliferating cell nuclear antigen (PCNA) expression. Notably, implantation into mice of a non-tumorigenic prostate epithelial cell line stably overexpressing PVT1 exon 9 resulted in the formation of malignant tumors. Furthermore, PVT1 exon 9 overexpression significantly induced castration resistance. Consequently, PVT1 exon 9 expression is important for PCa initiation and progression, and holds promise as a therapeutic target in PCa.
Objective: Radioactive iodine therapy (RAIT) is established as an efficient means of treating toxic goiter (TG) globally. The field of nuclear medicine (NM) still appears novel to many Nigerian clinicians and patients. A culturally embedded dread of radiation may raise ethical and moral concerns about potential adverse effects in the wake of RAIT in our setting. An adverse drug reaction may be described as “a response to a drug which is noxious and unintended, and which occurs at doses normally used in man”. This study therefore, seeks to review adverse reactions (ARs) experienced following RAIT. We would also like to improve patient and physician education about the safety profile of RAIT.Methods:This is a retrospective analysis of all patients who had received RAIT for thyroid disease from August 2006 to June 2015.Results: Forty typical ARs were experienced following 36 therapy sessions (18.65%) with RAIT in 35 patients (21.47%) aged 17-78 years, of which three had multiple sessions for well-differentiated thyroid carcinoma (WDTC).Conclusion: RAIT remains a safe option for the treatment of benign and TG. The experienced ARs are mainly mild to moderate in severity and mostly short-lived. As larger doses of radioactive iodine for WDTC and TG were more commonly associated with ARs, our study suggests that these patients merit stronger prophylactic measures as well as closer monitoring for earlier detection and management of these reactions.
Recent activities of Boko Haram, a local extremist group in Nigeria, raise concerns about a nuclear terrorist attack. Whereas nuclear medicine (NM) relies on the timely delivery of radioactive sources, a robust security structure that assures public safety is the backbone for its beneficial use. NM radionuclides have short half-lives and carry an insignificant risk for acts of terrorism. Yet, their importation and delivery in Nigeria receive undue scrutiny in a bid to implement a strict nuclear security regime. These actions prevent timely delivery of radionuclides with direct consequences on quality and economic viability of nuclear medicine. There have been no accounts of terrorist acts accomplished with NM radionuclides. Thus, it is important the NM community question the current approach that has contributed to the loss of NM services in Nigeria and proposes a more logical strategy for securing their supply. We also highlight the need for developing local pragmatic solutions when implementing global recommendations in developing countries.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.