Maximum Likelihood (ML) decoding is the optimal decoding algorithm for arbitrary linear block codes and can be written as an Integer Programming (IP) problem. Feldman et al. relaxed this IP problem and presented Linear Programming (LP) based decoding algorithm for linear block codes. In this paper, we propose a new IP formulation of the ML decoding problem and solve the IP with generic methods. The formulation uses indicator variables to detect violated parity checks. We derive Gomory cuts from our formulation and use them in a separation algorithm to find ML codewords. We further propose an efficient method of finding cuts induced by redundant parity checks (RPC). Under certain circumstances we can guarantee that these RPC cuts are valid and cut off the fractional optimal solutions of LP decoding. We demonstrate on two LDPC codes and one BCH code that our separation algorithm performs significantly better than LP decoding.
Abstract-Maximum Likelihood (ML) decoding is the optimal decoding algorithm for arbitrary linear block codes and can be written as an Integer Programming (IP) problem. Feldman et al. relaxed this IP problem and presented Linear Programming (LP) based decoding algorithm for linear block codes. In this paper, we propose a new IP formulation of the ML decoding problem and solve the IP with generic methods. The formulation uses indicator variables to detect violated parity checks. We derive Gomory cuts from our formulation and use them in a separation algorithm to find ML codewords. We further propose an efficient method of finding cuts induced by redundant parity checks (RPC). Under certain circumstances we can guarantee that these RPC cuts are valid and cut off the fractional optimal solutions of LP decoding. We demonstrate on two LDPC codes and one BCH code that our separation algorithm performs significantly better than LP decoding.
Abstract-Mathematical programming is a branch of applied mathematics and has recently been used to derive new decoding approaches, challenging established but often heuristic algorithms based on iterative message passing. Concepts from mathematical programming used in the context of decoding include linear, integer, and nonlinear programming, network flows, notions of duality as well as matroid and polyhedral theory. This survey article reviews and categorizes decoding methods based on mathematical programming approaches for binary linear codes over binary-input memoryless symmetric channels.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.