Renal dysfunction is now a prevalent complication of diabetes mellitus. Therefore, this study was carried out to evaluate the remedial effects of virgin coconut oil (VCO) on renal dysfunction in diabetic rats. Fifteen albino Wistar rats were divided into 3 groups that comprise normal control group (Group I) and diabetic control group (Group II) fed with normal rat chows and a diabetic test group (Group III) fed with 10% VCO diet. Group II and Group III were made diabetic by single intraperitoneal injection of 150 mg/kg of freshly prepared alloxan monohydrate. After 72 hours of alloxan injection, fasting blood glucose was tested to confirm diabetes mellitus. After 3 weeks, the animals were anaesthetized and sacrificed to collect blood samples for renal function analysis. The creatinine, urea, and blood urea nitrogen values of Group II were significantly different from those of Group I and Group III at < 0.001. Also, there was significant difference ( < 0.05) in total protein value between Group II (4.42 ± 0.47 mg/dL) and Group I (5.78 ± 0.12 mg/dL) as well as Group III (5.86 ± 0.19 mg/dL), but there was no significant difference between that of Group I and Group III (5.78 ± 0.12 mg/dL and 5.86 ± 0.19 mg/dL, resp.). Thus, VCO is effective in preventing renal damage in diabetic patients.
Virgin coconut oil (VCO) is a saturated fat with promising antidiabetic properties but its ameliorative effect on lipid profiles in diabetics is rarely reported. Therefore, in this study, a total of fifteen (15) male rats weighing 200–250 g were divided into 3 experimental groups (n=5). Group I (control) and Group II (diabetic control group) were fed a normal rat chow while Group III (diabetic test group) was fed a 10% VCO diet for 3 weeks. Group II and Group III were made diabetic by intraperitoneal injection of 150 mg/kg of alloxan. After 72 hours of injection, blood glucose was tested to confirm diabetes mellitus. After 3 weeks, the animals were sacrificed to collect blood samples for lipid profile analysis. The results showed a significant increase in concentrations of triglyceride, total cholesterol, low density lipoprotein, and very low density lipoprotein and decrease in concentration of high density lipoprotein in Group II when compared to Group I. Also, the concentrations of triglyceride, total cholesterol, low density lipoprotein, and very low density lipoprotein except high density lipoprotein significantly reduced in Group III when compared to Group II (P<0.01, 0.001). VCO consumption can be claimed to ameliorate lipid levels in diabetes mellitus.
Background. Prediabetes is an intermediary hyperglycaemic state that precedes type 2 diabetes mellitus (T2DM) in which abnormal metabolism of glucose and lipids occurs in organs such as the liver. Evidence has shown that, about 70% of T2DM patients develop hepatic dysfunction which is found to begin during the prediabetic stage. Bredemolic acid, a pentacyclic triterpene, has been found to improve insulin sensitivity in diet-induced prediabetic rats. The effects of this compound on liver function, however, are unknown. This study was therefore designed to investigate the effects of BA on liver function in high fat-high carbohydrate (HFHC) diet-induced prediabetic rats. Methods. Thirty-six (36) male rats that weigh 150 g–180 g were divided into two groups, the non-prediabetic (n = 6) and the prediabetic groups (n = 30) that were fed normal diet (ND) and HFHC diet, respectively. The prediabetic rats were further subdivided into five groups (n = 6) and treated with either BA (80 mg/kg) or metformin (MET, 500 mg/kg) every third day for 12 weeks. After 12 weeks, blood samples and the liver were collected for biochemical analysis. Results. The induction of prediabetes resulted in increased release of liver enzymes (AST and ALT), increased liver glycogen and triglyceride, lipid peroxidation, and decreased sterol regulatory element-binding protein (SREBP1c) and antioxidant enzymes. However, the administration of BA decreased liver enzyme concentrations, decreased hepatic oxidative stress, and improved antioxidant enzymes such as SOD and GPx. Conclusion. BA administration improved liver function in diet-induced prediabetic rats in the presence or absence of dietary intervention.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.