Human health is threatened by antibiotic-resistant bacteria and their related infections, which cause thousands of human deaths every year worldwide. Surface waters are vulnerable to human activities and natural processes that facilitate the emergence and spread of antibiotic-resistant bacteria in the environment. This study evaluated the pathways and drivers of antimicrobial resistance (AR) in surface waters. We analyzed antibiotic resistance healthcare-associated infection (HAI) data reported to the CDC’s National Healthcare Safety Network to determine the number of antimicrobial-resistant pathogens and their isolates detected in healthcare facilities. Ten pathogens and their isolates associated with HAIs tested resistant to the selected antibiotics, indicating the role of healthcare facilities in antimicrobial resistance in the environment. The analyzed data and literature research revealed that healthcare facilities, wastewater, agricultural settings, food, and wildlife populations serve as the major vehicles for AR in surface waters. Antibiotic residues, heavy metals, natural processes, and climate change were identified as the drivers of antimicrobial resistance in the aquatic environment. Food and animal handlers have a higher risk of exposure to resistant pathogens through ingestion and direct contact compared with the general population. The AR threat to public health may grow as pathogens in aquatic systems adjust to antibiotic residues, contaminants, and climate change effects. The unnecessary use of antibiotics increases the risk of AR, and the public should be encouraged to practice antibiotic stewardship to decrease the risk.
Fishmeal is widely accepted as a protein source in fish feed formulation, making it a highly demanded ingredient, and this has probably contributed to its increased cost. Cheaper protein sources of plant and animal origin have been tested as potential replacements for fishmeal to reduce feed costs in fish production and guarantee a suitable nutrient supply for adequate growth. Therefore, this review assessed the effect of replacing fishmeal in the diet of African catfish, Clarias gariepinus based on empirical findings. Using a systematic literature review protocol, an extensive search of five databases resulted in the final inclusion of 32 articles for appraisal and meta-analysis. Fishmeal replacements were at levels ranging from 7–100%, while fish survival rate and feed conversion ratio recorded non-significant effects of fishmeal replacement (p > 0.05). However, final weight, weight gain, specific growth rate, and protein efficiency ratio revealed a significant effect of fishmeal replacement (p < 0.05) in the diet of African catfish. Our overall analyses suggest that feed ingredients such as microalgae and insects/worms are potentially perfect replacements for fishmeal.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.