Necroptosis is a highly pro-inflammatory mode of cell death regulated by RIP (or RIPK)1 and RIP3 kinases and mediated by the effector MLKL. We report that diverse bacterial pathogens that produce a pore-forming toxin (PFT) induce necroptosis of macrophages and this can be blocked for protection against Serratia marcescens hemorrhagic pneumonia. Following challenge with S. marcescens, Staphylococcus aureus, Streptococcus pneumoniae, Listeria monocytogenes, uropathogenic Escherichia coli (UPEC), and purified recombinant pneumolysin, macrophages pretreated with inhibitors of RIP1, RIP3, and MLKL were protected against death. Alveolar macrophages in MLKL KO mice were also protected during S. marcescens pneumonia. Inhibition of caspases had no impact on macrophage death and caspase-1 and -3/7 were determined to be inactive following challenge despite the detection of IL-1β in supernatants. Bone marrow-derived macrophages from RIP3 KO, but not caspase-1/11 KO or caspase-3 KO mice, were resistant to PFT-induced death. We explored the mechanisms for PFT-induced necroptosis and determined that loss of ion homeostasis at the plasma membrane, mitochondrial damage, ATP depletion, and the generation of reactive oxygen species were together responsible. Treatment of mice with necrostatin-5, an inhibitor of RIP1; GW806742X, an inhibitor of MLKL; and necrostatin-5 along with co-enzyme Q10 (N5/C10), which enhances ATP production; reduced the severity of S. marcescens pneumonia in a mouse intratracheal challenge model. N5/C10 protected alveolar macrophages, reduced bacterial burden, and lessened hemorrhage in the lungs. We conclude that necroptosis is the major cell death pathway evoked by PFTs in macrophages and the necroptosis pathway can be targeted for disease intervention.
In a murine model of acute fatal pneumonia, we previously showed that nasal immunization with a live-attenuated aroA deletant of Pseudomonas aeruginosa strain PAO1 elicited LPS serogroup-specific protection, indicating that opsonic Ab to the LPS O Ag was the most important immune effector. Because P. aeruginosa strain PA14 possesses additional virulence factors, we hypothesized that a live-attenuated vaccine based on PA14 might elicit a broader array of immune effectors. Thus, an aroA deletant of PA14, denoted PA14ΔaroA, was constructed. PA14ΔaroA-immunized mice were protected against lethal pneumonia caused not only by the parental strain but also by cytotoxic variants of the O Ag-heterologous P. aeruginosa strains PAO1 and PAO6a,d. Remarkably, serum from PA14ΔaroA-immunized mice had very low levels of opsonic activity against strain PAO1 and could not passively transfer protection, suggesting that an antibody-independent mechanism was needed for the observed cross-serogroup protection. Compared with control mice, PA14ΔaroA-immunized mice had more rapid recruitment of neutrophils to the airways early after challenge. T cells isolated from P. aeruginosa ΔaroA-immunized mice proliferated and produced IL-17 in high quantities after coculture with gentamicin-killed P. aeruginosa. Six hours following challenge, PA14ΔaroA-immunized mice had significantly higher levels of IL-17 in bronchoalveolar lavage fluid compared with unimmunized, Escherichia coli-immunized, or PAO1ΔaroA-immunized mice. Antibody-mediated depletion of IL-17 before challenge or absence of the IL-17 receptor abrogated the PA14ΔaroA vaccine’s protection against lethal pneumonia. These data show that IL-17 plays a critical role in antibody-independent vaccine-induced protection against LPS-heterologous strains of P. aeruginosa in the lung.
Many animal studies investigating adaptive immune effectors important for protection against Pseudomonas aeruginosa have implicated opsonic antibody to the antigenically variable lipopolysaccharide (LPS) O antigens as a primary effector. However, active and passive vaccination of humans against these antigens has not shown clinical efficacy. We hypothesized that optimal immunity would require inducing multiple immune effectors targeting multiple bacterial antigens. Therefore, we evaluated a multivalent live-attenuated mucosal vaccination strategy in a murine model of acute P. aeruginosa pneumonia to assess the contributions to protective efficacy of various bacterial antigens and host immune effectors. Vaccines combining 3 or 4 attenuated strains having different LPS serogroups were associated with the highest protective efficacy compared to vaccines with fewer components. Levels of opsonophagocytic antibodies, which were directed not only to the LPS O antigens but also to the LPS core and surface proteins, correlated with protective immunity. The multivalent liveattenuated vaccines overcame prior problems involving immunologic interference in the development of O-antigen-specific antibody responses when closely related O antigens were combined in multivalent vaccines. Antibodies to the LPS core were associated with in vitro killing and in vivo protection against strains with O antigens not expressed by the vaccine strains, whereas antibodies to the LPS core and surface proteins augmented the contribution of O-antigen-specific antibodies elicited by vaccine strains containing a homologous O antigen. Local CD4 T cells in the lung also contributed to vaccine-based protection when opsonophagocytic antibodies to the challenge strain were absent. Thus, multivalent live-attenuated vaccines elicit multifactorial protective immunity to P. aeruginosa lung infections.Pseudomonas aeruginosa lung infections cause substantial morbidity and mortality in humans, manifesting as acute lifethreatening infection, often with bacteremia, in hospitalized and/or immunocompromised patients or as chronic localized lung infection in patients with cystic fibrosis (CF). In hospitalacquired lung infections, which are most commonly ventilatorassociated pneumonias, P. aeruginosa is the leading Gramnegative causative bacterial agent (31). In these infections, the crude mortality rate associated with the bacterium is higher than that due to other bacterial etiologies (30). Despite the widespread and significant impact of P. aeruginosa infections, along with the increasing rates of antibiotic treatment failure due to drug resistance (33), vaccines and immunotherapeutic agents for the disease are still in the early stages of preclinical and clinical development (7).In animal studies, lipopolysaccharide (LPS) O antigens of P. aeruginosa induce potent serogroup-specific protection (i.e., protection against P. aeruginosa strains within the same LPS O-antigen serogroup) (23, 24). However, even within a serogroup there are structural, and hence antige...
The usefulness of vaccine-based strategies to prevent lethal bacterial infection in a host with neutropenia is not well-defined. Here, we show in a neutropenic mouse model that immunity induced by mucosal vaccination with a live-attenuated Pseudomonas aeruginosa vaccine is protective against lethal P. aeruginosa pneumonia caused by both vaccine-homologous and vaccine-heterologous strains, whereas passive immunization confers only vaccine-homologous protection. Cells in the macrophage lineage served as crucial innate cellular effectors in the neutropenic host after active immunization. Vaccine efficacy was CD4(+) T-cell dependent and associated with accumulation of macrophage-lineage cells in the alveolar space after infection, as well as with enhanced P. aeruginosa clearance from the lung. Adaptive CD4(+) T cells produced granulocyte-macrophage colony-stimulating factor (GM-CSF) on restimulation in vitro, and local GM-CSF was critical for vaccine efficacy. Thus, collaboration between the innate and adaptive effectors induced by mucosal vaccination can overcome neutropenia and confer protection against lethal bacterial infection in the profoundly neutropenic host.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.