BackgroundA new framework for heart sound analysis is proposed. One of the most difficult processes in heart sound analysis is segmentation, due to interference form murmurs.MethodEqual number of cardiac cycles were extracted from heart sounds with different heart rates using information from envelopes of autocorrelation functions without the need to label individual fundamental heart sounds (FHS). The complete method consists of envelope detection, calculation of cardiac cycle lengths using auto-correlation of envelope signals, features extraction using discrete wavelet transform, principal component analysis, and classification using neural network bagging predictors.ResultThe proposed method was tested on a set of heart sounds obtained from several on-line databases and recorded with an electronic stethoscope. Geometric mean was used as performance index. Average classification performance using ten-fold cross-validation was 0.92 for noise free case, 0.90 under white noise with 10 dB signal-to-noise ratio (SNR), and 0.90 under impulse noise up to 0.3 s duration.ConclusionThe proposed method showed promising results and high noise robustness to a wide range of heart sounds. However, more tests are needed to address any bias that may have been introduced by different sources of heart sounds in the current training set, and to concretely validate the method. Further work include building a new training set recorded from actual patients, then further evaluate the method based on this new training set.
This paper proposes a novel and robust voice activity detection (VAD) algorithm utilizing long-term spectral flatness measure (LSFM) which is capable of working at 10 dB and lower signal-to-noise ratios(SNRs). This new LSFM-based VAD improves speech detection robustness in various noisy environments by employing a low-variance spectrum estimate and an adaptive threshold. The discriminative power of the new LSFM feature is shown by conducting an analysis of the speech/non-speech LSFM distributions. The proposed algorithm was evaluated under 12 types of noises (11 from NOISEX-92 and speech-shaped noise) and five types of SNR in core TIMIT test corpus. Comparisons with three modern standardized algorithms (ETSI adaptive multi-rate (AMR) options AMR1 and AMR2 and ITU-T G.729) demonstrate that our proposed LSFM-based VAD scheme achieved the best average accuracy rate. A long-term signal variability (LTSV)-based VAD scheme is also compared with our proposed method. The results show that our proposed algorithm outperforms the LTSV-based VAD scheme for most of the noises considered including difficult noises like machine gun noise and speech babble noise.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.