In human inflammatory sites, PD-1hiCXCR5−CD4+ T cells are involved in the formation of ectopic lymphoid-like structures (ELSs) by the secretion of chemokine CXCL13, but how the transcription of CXCL13 is regulated in CD4+ T cells is still unclear. Here we show that Sox4 is a key transcription factor for CXCL13 production in human CD4+ T cells under inflammatory conditions. In vitro TGF-β+, IL-2-neutralizing culture conditions give rise to PD-1hiCXCR5−CD4+ T cells that preferentially express CXCL13, and transcriptome analysis and lentiviral overexpression indicate Sox4 association with the CXCL13 transcription. In vivo, Sox4 is significantly upregulated in synovial CD4+ T cells, when compared with blood CD4+ T cells, from patients with rheumatoid arthritis (RA), and further correlates with ELS formation in RA synovium. Overall, our studies suggest that Sox4 contributes to CXCL13 production and ELS formation at inflammatory sites in humans.
Background Rheumatoid arthritis (RA) is known to cause secondary osteoporosis and fragility fractures. This study aimed to identify biomarkers predictive of bone mineral density (BMD) change at three anatomical sites in patients with RA. Methods We conducted a prospective longitudinal study in patients with RA. In 2012, we recruited 379 patients from an RA cohort, 329 of whom underwent evaluation of blood and urine biomarkers together with measurement of BMD in the lumbar spine, proximal femur, and distal forearm. The BMD in these three regions was reassessed in 2014. We performed multivariate linear regression analysis to identify those factors associated with BMD change. Results The averages of age, body mass index, and disease activity score in 28 joints (DAS28) at baseline were 63.2 (minimum to maximum, 32–85), 21.3 (12.3–30.0), and 3.2 (0.1–5.9), respectively. Univariate analysis showed that the annual BMD change was significantly associated with the use of steroid, bisphosphonate (BP) or vitamin D (VitD), and serum homocysteine in the lumber spine; DAS28, the use of BP or VitD, CRP, and anti-cyclic citrullinated peptide antibody (ACPA) in the proximal femur; and the dosage of MTX, the use of BP or VitD, and serum tartrate-resistant acid phosphatase 5b (TRACP-5b) in the distal forearm, respectively. Conclusions Predictive biomarkers for BMD change in RA patients differ at each anatomical site. Practitioners should treat each anatomical site with different markers and prescribe osteoporosis drugs to prevent fractures for RA patients.
Nonsurgical treatment such as exercise is the preferred method for management of knee osteoarthritis (OA). A combination of aerobic, muscle strengthening, and flexibility exercises is recommended for older adults. However, effects of the exercise intervention on cartilage metabolism remain unclear. This study used biomarkers to investigate the effects of well-rounded exercise program on cartilage metabolism in 42 women (mean age: 59 years). Participants started a weekly supervised exercise program and continued for 12 weeks. Before and after the program, we measured physical performance on the Timed Up-and-Go Test, 3-Minute Walk Test, and 30-Second Chair Stand Test. We collected serum and urine samples at the start of the program until 24 weeks and measured the concentrations of 4 biomarkers related to type II collagen metabolism: serum cartilage type II procollagen carboxy propeptide (sPIICP), urine C-terminal telopeptide of collagen type II (uCTX-II), urine cleavage of type II collagen by collagenases (uC2C), and serum cartilage oligomeric matrix protein (sCOMP). Participants were divided into pre-OA and OA groups based on X-ray findings. The pre-OA group showed significant increases and decreases in sPIICP and uCTX-II concentrations with improved physical performance, respectively. sCOMP concentrations significantly increased in both groups. The exercise also improved physical performance with no detrimental effect on type II collagen metabolism in the OA group. Thus, well-rounded exercise may not only improve physical capacity but also have beneficial effects on type II collagen metabolism, especially in people without radiological OA.
The thickness and the grade of the articular cartilages of the knee of 34 patients who underwent total knee arthroplasty were evaluated by ultrasound (US) and by histology. The US grade correlated with the histological grade and the thickness of the articular cartilage measured by US. The thickness measured by US was significantly correlated with that measured by histology for the medial condyle. The US thickness was significantly less than the histological thickness for thicker articular cartilages. US grading and the thickness of the articular cartilages evaluated by US is sufficiently reliable to indicate their histological status.
ObjectiveTumour necrosis factor alpha (TNF-α) plays an important role in rheumatoid arthritis (RA). TNF-α is synthesised as a membrane-anchored precursor and is fully activated by a disintegrin and metalloproteinase 17 (ADAM17)-mediated ectodomain shedding. Nardilysin (NRDC) facilitates ectodomain shedding via activation of ADAM17. This study was undertaken to elucidate the role of NRDC in RA.MethodsNRDC-deficient (Nrdc–/–) mice and macrophage-specific NRDC-deficient (NrdcdelM) mice were examined in murine RA models, collagen antibody-induced arthritis (CAIA) and K/BxN serum transfer arthritis (K/BxN STA). We evaluated the effect of gene deletion or silencing of Nrdc on ectodomain shedding of TNF-α in macrophages or monocytes. NRDC concentration in synovial fluid from patients with RA and osteoarthritis (OA) were measured. We also examined whether local gene silencing of Nrdc ameliorated CAIA.ResultsCAIA and K/BxN STA were significantly attenuated in Nrdc–/– mice and NrdcdelM mice. Gene deletion or silencing of Nrdc in macrophages or THP-1 cells resulted in the reduction of TNF-α shedding. The level of NRDC is higher in synovial fluid from RA patients compared with that from OA patients. Intra-articular injection of anti-Nrdcsmall interfering RNA ameliorated CAIA.ConclusionThese data indicate that NRDC plays crucial roles in the pathogenesis of autoimmune arthritis and could be a new therapeutic target for RA treatment.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.