Chemical reaction yield is one of the most important factors for determining reaction conditions. Recently, several machine learning-based prediction models using high-throughput experiment (HTE) data sets were reported for the prediction of reaction yield. However, none of them were at a practical level in terms of predictive ability. In this study, we propose a message passing neural network (MPNN) model for chemical yield prediction, focusing on the Buchwald-Hartwig cross-coupling HTE data set. As an initial atom embedding in MPNN model, we propose to use the Mol2Vec feature vectors pre-trained using a large compound database. Predictive ability of the proposed model was higher than that of previously reported five models for the three out of five data sets. Moreover, visualization of important atoms based on selfattention mechanism was in favor of Mol2Vec as an atom embedding rather than other embeddings including previously employed simple representations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.