Robust motion control against dynamic torque is required for rapid and precise motion control of industrial robots. In this regard, a disturbance observer (DOB) is widely used to achieve robust motion control. In general, it is difficult to achieve robust motion control against a step load torque because the DOB exhibits an estimation delay. To overcome this problem, this paper proposes a new method involving the use of a Kalman-filter-based instantaneous state observer for load torque compensation. The proposed method achieves the instantaneous load torque estimation of a two-inertia system using a load-side acceleration sensor. Torque compensation based on instantaneous torque estimation is highly robust against the insertion of a step load torque. The effectiveness of the proposed method is confirmed by performing both a numerical simulation and experiments using an industrial robot arm.
To achieve force control of an industrial robot, this paper proposes a new force control method based on the spring ratio and the instantaneous state observer. To analyze the behavior of an industrial robot in contact with the environment, this paper analyzes a two-inertia system in contact with the environment. On the basis of the resonance ratio considering the environment, this paper shows that the stability of the resonance ratio control depends on the bandwidth of the torsional torque estimation. To achieve stable resonance ratio control, this paper employs the resonance ratio control with the instantaneous state observer. In addition, a force control system using the I-P force controller and the instantaneous state observer is employed. This paper shows that the resonance ratio of the force control system is determined to be the spring ratio S . The effectiveness of the proposed method is confirmed by a numerical simulation and experiments using the industrial robot arm.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.