This study was conducted to gain insights into the survival of Salmonella on a polypropylene surface in relation to the ability of these bacteria to form a biofilm. We selected Salmonella strains known for the relative ease or difficulty with which they formed biofilms based on microtiter plate assays and studied the survival of these strains on polypropylene discs in a desiccation chamber by sequentially counting CFUs. The biofilm-forming strains survived longer on the plastic disc surface than did biofilm-deficient strains. The biofilm-forming strains remained at over 10(4) CFU per plate until day 175, whereas the biofilm-deficient strains decreased to below 10(2) CFU per plate on day 20 or below 10(4) CFU per plate on day 108. Extracellular materials on the polypropylene surface were observed by scanning electron microscopy and crystal violet staining for the biofilm-forming strains but not for the biofilm-deficient strains. The extracellular polymeric materials on the polypropylene surface may have protected the bacterial cells from dryness, although the possibility of some inherent resistance to environmental stresses linked to biofilm formation could not be excluded. These results indicate that Salmonella strains with high biofilm productivity may be a greater risk to human health via food contamination by surviving for longer periods compared with strains with low biofilm productivity.
Recently, the finite difference time domain (FDTD) method has been frequently used for the analysis of underwater sound propagation. There are demonstrated advantages of this FDTD method in terms of obtaining data regarding snapshots of sound pressure distribution and a series of waveforms at any point. In addition, the method facilitates the modeling of factors, such as the sound source and media into the analysis domain. In this study, a three-dimensional FDTD analysis was carried out in order to obtain the sound field focused by a biconcave acoustic lens specialized to measure the normal incidence of the spherical wave. Additionally, the results of the analysis were compared with experimental results obtained in a water tank. When the frequency of the sound source was 500 kHz, the range between the acoustic lens and the sound source was 1.78 m, and the attenuation constant was 0.5–1.0 dB/λ, the experimental results regarding the position of the focal point, the on-axis characteristics and the beam pattern were all found to agree well with the simulation results obtained by FDTD method.
Practicing pathologists expect major somatic genetic changes in cancers, because the morphological deviations in the cancers they diagnose are so great that the somatic genetic changes to direct these phenotypes of tumors are supposed to be correspondingly tremendous. Several lines of evidence, especially lines generated by high-throughput genomic sequencing and genome-wide analyses of cancer DNAs are verifying their preoccupations. This article reviews a comprehensive morphological approach to pathology archives that consists of fluorescence in situ hybridization with bacterial artificial chromosome (BAC) probes and screening with tissue microarrays to detect structural changes in chromosomes (copy number alterations and rearrangements) in specimens of human solid tumors. The potential of this approach in the attempt to provide individually tailored medical practice, especially in terms of cancer therapy, is discussed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.