We examined the role of nitric oxide (NO) in adrenal catecholamine secretion in response to splanchnic nerve stimulation (SNS) and exogenous acetylcholine (ACh) in anesthetized dogs. The NO synthase inhibitor N ω-nitro-l-arginine methyl ester (l-NAME), NO donor 3-(2-hydroxy-1-methyl-2-nitrosohydrazino)- N-methyl-1-propanamine (NOC 7), and ACh were administered intra-arterially into the adrenal gland. The increases in catecholamine output induced by ACh (0.75–3 μg) were enhanced byl-NAME (0.1–1 mg/min) and inhibited by NOC 7 (0.2–2 μg/min). Inhibition by NOC 7 (2 μg/min) was observed during treatment withl-NAME (1 mg/min). The increases in catecholamine output induced by SNS (1–2 Hz) were inhibited byl-NAME and by NOC 7. No inhibitory effect of NOC 7 was observed during treatment withl-NAME. These results suggest that NO may play an inhibitory role in the regulation of adrenal catecholamine secretion in response to exogenous ACh.
We examined the effects of proadrenomedullin-derived peptides on the release of adrenal catecholamines in response to cholinergic stimuli in pentobarbital sodium-anesthetized dogs. Drugs were administered into the adrenal gland through the phrenicoabdominal artery. Splanchnic nerve stimulation (1, 2, and 3 Hz) and ACh injection (0.75, 1.5, and 3 μg) produced frequency- or dose-dependent increases in adrenal catecholamine output. These responses were unaffected by infusion of adrenomedullin (1, 3, and 10 ng ⋅ kg−1 ⋅ min−1) or its selective antagonist adrenomedullin-(22—52) (5, 15, and 50 ng ⋅ kg−1 ⋅ min−1). Proadrenomedullin NH2-terminal 20 peptide (PAMP; 5, 15, and 50 ng ⋅ kg−1 ⋅ min−1) suppressed both the splanchnic nerve stimulation- and ACh-induced increases in catecholamine output in a dose-dependent manner. PAMP also suppressed the catecholamine release responses to the nicotinic agonist 1,1-dimethyl-4-phenylpiperazinium (0.5, 1, and 2 μg) and to muscarine (0.5, 1, and 2 μg), although the muscarine-induced response was relatively resistant to PAMP. These results suggest that PAMP, but not adrenomedullin, can act as an inhibitory regulator of adrenal catecholamine release in vivo.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.