To inspect the post-accident nuclear core reactor of the TEPCO Fukushima Daiichi nuclear power plant (F1-NPP), a transportable fiber-coupled laser-induced breakdown spectroscopy (LIBS) instrument has been developed. The developed LIBS instrument was designed to analyze underwater samples in a highradiation field by single-pulse breakdown with gas flow or double-pulse breakdown. To check the feasibility of the assembled fiber-coupled LIBS instrument for the analysis of debris material (mixture of the fuel core, fuel cladding, construction material and so on) in the F1-NPP, we investigated the influence of the radiation dose on the optical transmittance of the laser delivery fiber, compared data quality among various LIBS techniques for an underwater sample and studied the feasibility of the fiber-coupled LIBS system in an analysis of the underwater sample of the simulated debris in F1-NPP. In a feasible study conducted by using simulated debris, which was a mixture of CeO 2 (surrogate of UO 2 ), ZrO 2 and Fe, we selected atomic lines suitable for the analysis of materials, and prepared calibration curves for the component elements. The feasible study has guaranteed that the developed fiber-coupled LIBS system is applicable for analyzing the debris materials in the F1-NPP.
Three kinds of ampholites, i.e., 3-aminopropionic acid (NH2C2H4COOH), (2-aminoethyl)phosphonic acid (NH2C2H4PO3H2), and 2-aminoethane-1-sulfonic acid (NH2C2H4SO3H), were introduced into an epoxy group-containing polymer brush grafted onto a porous hollow-fiber membrane with a porosity of 70% and pore size of 0.36 microm. The amphoteric group density of the hollow-fiber ranged from 0.50 to 0.72 mmol/g. Three kinds of proteins, i.e., lactoferrin (Lf), cytochrome c (Cyt c), and lysozyme (Ly), were captured by the amphoteric polymer brush during the permeation of the protein solution across the ampholite-immobilized porous hollow-fiber membrane. Multilayer binding of the protein to the amphoteric polymer brush, with a degree of multilayer binding of 3.3, 8.6, and 15 for Lf, Cyt c, and Ly, respectively, with the (2-aminoethyl)phosphonic acid-immobilized porous hollow-fiber membrane, was demonstrated with a negligible diffusional mass-transfer resistance of the protein to the ampholite immobilized. The 2-aminoethane-1-sulfonic acid-immobilized porous hollow-fiber membrane exhibited the lowest initial flux of the protein solution, 0.41 m/h at a transmembrane pressure of 0.1 MPa and 298 K, and the highest equilibrium binding capacity of the protein, e.g., 130 mg/g for lysozyme. Extension and shrinkage of the amphoteric polymer brushes were observed during the binding and elution of the proteins.
The growth of a styrene-degrading bacterium, Pseudomonas sp. SR-5, was inhibited by benzoic acid (BA), one of the styrene degradation intermediates, in liquid culture. A benzoic acid-degrading microorganism, Raoultella sp. strain A, was isolated from a peat biofilter inoculated with a wastewater. The styrene removal efficiencies of the two laboratory-scale biofilters inoculated with only strain SR-5 and a mixed culture of strains SR-5 and A were compared using a mixed packing material of peat and ceramic (1:1) for 45 days. The biofilter with the mixed culture showed a higher removal efficiency than that with a single culture of SR-5. The maximum elimination capacities of the biofilters with the mixed culture and the single culture were 141 g m(-3)h(-1) and 106 g m(-3)h(-1), respectively. In the biofilter with the single culture, 136 g of benzoic acid (m3 of dry packing material)(-1) was accumulated at the end of the experiment. However, no accumulation of benzoic acid was observed in the biofilter with the mixed culture.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.