Use of nitroglycerin combined with vinorelbine and cisplatin may improve overall response and TTP in patients with stage IIIB/IV NSCLC. The arm A regimen is being evaluated in a large phase III trial.
Recombinant granulocyte colony-stimulating factor (G-CSF) is used for cancer patients with myelosuppression induced by chemotherapy. G-CSF has been reported to progress tumor growth and angiogenesis, but the precise mechanism of tumor angiogenesis activated by G-CSF has not been fully clarified. N-terminal-mutated recombinant human G-CSF administration increased WBCs and neutrophils in peripheral blood and reduced bone marrow stromal cell-derived factor-1 in mice, indicating its biological relevance. Mice were inoculated with Lewis lung carcinoma cells (LLCs) or KLN205 cells and treated with G-CSF. G-CSF accelerated tumor growth and intratumoral vessel density, while it did not accelerate proliferation of LLCs, KLN205 cells or human umbilical vein endothelial cells in vitro. In the absence of tumors, G-CSF did not increase circulating cells that displayed phenotypic characteristics of endothelial progenitor cells (EPCs). In the presence of tumors, G-CSF increased circulating EPCs. In addition, G-CSF treatment increased immune suppressor and endothelial cell-differentiating Gr1+CD11b+ cells in tumor-bearing mice. We conclude that G-CSF promotes tumor growth by activating tumor angiogenesis via increasing circulating EPCs and Gr1+CD11b+ cells in cancer animal models.
Purpose: Nitroglycerin may improve the response to chemotherapy in advanced non^small cell lung cancer. The effects and mechanisms of nitroglycerin on the enhancement of chemosensitivity to docetaxel and carboplatin regimen (DCb) in patients with lung adenocarcinoma have not been reported. Experimental Design: Seventeen patients with operable lung adenocarcinoma and stable angina pectoris were selected to investigate the effects of nitroglycerin on immunoreactivity for hypoxia-inducible factor 1a (HIF-1a), vascular endothelial growth factor (VEGF), P-glycoprotein (P-gp), the production of which is regulated by HIF-1, and p53 proteins in their resected tumor by semiquantitative immunohistochemical analyses. Eight of 17 patients were treated with nitroglycerin patches before operation, but 9 of 17 patients were not. Furthermore, to study the relationship between changes in plasmaVEGF levels by nitroglycerin treatment and response to DCb, 29 patients with advanced lung adenocarcinoma were treated with nitroglycerin for 3 days before chemotherapy using DCb. Results: The rates of immunoreactive cells for HIF-1a, VEGF, and P-gp in tumor tissues treated with nitroglycerin were lower than those without nitroglycerin, but those for p53 were not different between those treated with and without nitroglycerin. Furthermore, the rates of immunoreactive cells for VEGF and P-gp proteins were significantly associated with those for HIF-1ain tumor tissue. The magnitude of decrease in plasma VEGF levels after treatment with nitroglycerin was significantly associated with response to DCb in patients with advanced lung adenocarcinoma. Conclusions: Nitroglycerin treatment may improve response to DCb in patients with lung adenocarcinoma, partly through decreasingVEGF and P-gp production via reduction of HIF-1a.
Although M-CSF has been used for myelosuppression due to chemotherapy in patients with solid tumors, the effect of exogenous M-CSF on tumor angiogenesis has not been studied. In this study we showed that M-CSF has the ability to accelerate solid tumor growth by enhancing angiogenesis with a novel mechanism. M-CSF accelerated intratumoral vessel density in tumors inoculated into mice, although it did not accelerate the proliferation of malignant cells and cultured endothelial cells in vitro. In both the absence and the presence of tumors, M-CSF significantly increased the circulating cells that displayed phenotypic characteristics of endothelial progenitor cells in mice. Moreover, M-CSF treatment induced the systemic elevation of vascular endothelial growth factor (VEGF). VEGFR-2 kinase inhibitor significantly impaired the effect of M-CSF on tumor growth. In vivo, M-CSF increased VEGF mRNA expression in skeletal muscles. Even after treatment with carageenan and anti-CD11b mAb in mice, M-CSF increased VEGF production in skeletal muscles, suggesting that systemic VEGF elevation was attributed to skeletal muscle VEGF production. In vitro, M-CSF increased VEGF production and activated the Akt signaling pathway in C2C12 myotubes. These results suggest that M-CSF promotes tumor growth by increasing endothelial progenitor cells and activating angiogenesis, and the effects of M-CSF are largely based on the induction of systemic VEGF from skeletal muscles.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.