In 2008 we published the first set of guidelines for standardizing research in autophagy. Since then, research on this topic has continued to accelerate, and many new scientists have entered the field. Our knowledge base and relevant new technologies have also been expanding. Accordingly, it is important to update these guidelines for monitoring autophagy in different organisms. Various reviews have described the range of assays that have been used for this purpose. Nevertheless, there continues to be confusion regarding acceptable methods to measure autophagy, especially in multicellular eukaryotes. A key point that needs to be emphasized is that there is a difference between measurements that monitor the numbers or volume of autophagic elements (e.g., autophagosomes or autolysosomes) at any stage of the autophagic process vs. those that measure flux through the autophagy pathway (i.e., the complete process); thus, a block in macroautophagy that results in autophagosome accumulation needs to be differentiated from stimuli that result in increased autophagic activity, defined as increased autophagy induction coupled with increased delivery to, and degradation within, lysosomes (in most higher eukaryotes and some protists such as Dictyostelium) or the vacuole (in plants and fungi). In other words, it is especially important that investigators new to the field understand that the appearance of more autophagosomes does not necessarily equate with more autophagy. In fact, in many cases, autophagosomes accumulate because of a block in trafficking to lysosomes without a concomitant change in autophagosome biogenesis, whereas an increase in autolysosomes may reflect a reduction in degradative activity. Here, we present a set of guidelines for the selection and interpretation of methods for use by investigators who aim to examine macroautophagy and related processes, as well as for reviewers who need to provide realistic and reasonable critiques of papers that are focused on these processes. These guidelines are not meant to be a formulaic set of rules, because the appropriate assays depend in part on the question being asked and the system being used. In addition, we emphasize that no individual assay is guaranteed to be the most appropriate one in every situation, and we strongly recommend the use of multiple assays to monitor autophagy. In these guidelines, we consider these various methods of assessing autophagy and what information can, or cannot, be obtained from them. Finally, by discussing the merits and limits of particular autophagy assays, we hope to encourage technical innovation in the field
Vps30p/Apg6p is required for both autophagy and sorting of carboxypeptidase Y (CPY). Although Vps30p is known to interact with Apg14p, its precise role remains unclear. We found that two proteins copurify with Vps30p. They were identified by mass spectrometry to be Vps38p and Vps34p, a phosphatidylinositol (PtdIns) 3–kinase. Vps34p, Vps38p, Apg14p, and Vps15p, an activator of Vps34p, were coimmunoprecipitated with Vps30p. These results indicate that Vps30p functions as a subunit of a Vps34 PtdIns 3–kinase complex(es). Phenotypic analyses indicated that Apg14p and Vps38p are each required for autophagy and CPY sorting, respectively, whereas Vps30p, Vps34p, and Vps15p are required for both processes. Coimmunoprecipitation using anti-Apg14p and anti-Vps38p antibodies and pull-down experiments showed that two distinct Vps34 PtdIns 3–kinase complexes exist: one, containing Vps15p, Vps30p, and Apg14p, functions in autophagy and the other containing Vps15p, Vps30p, and Vps38p functions in CPY sorting. The vps34 and vps15 mutants displayed additional phenotypes such as defects in transport of proteinase A and proteinase B, implying the existence of another PtdIns 3–kinase complex(es). We propose that multiple Vps34p–Vps15p complexes associated with specific regulatory proteins might fulfill their membrane trafficking events at different sites.
Autophagy is an intracellular bulk protein degradation system. Beclin is known to be involved in this process; however, its role is unclear. In this study, we showed that Beclin was co-immunoprecipitated with phosphatidylinositol (PtdIns) 3-kinase, which is also required for autophagy, suggesting that Beclin is a component of the PtdIns 3-kinase complex. Quantitative analyses using a cross-linker showed that all Beclin forms a complex with PtdIns 3-kinase, whereas ∼50% of PtdIns 3-kinase remains free from Beclin. Indirect immunofluorescence microscopy demonstrated that the majority of Beclin and PtdIns 3-kinase localize to the trans-Golgi network (TGN). Some PtdIns 3-kinase is also distributed in the late endosome. These results suggest that Beclin and PtdIns 3-kinase control autophagy as a complex at the TGN.
Increasing evidence indicates that DHHC cysteine-rich domain-containing proteins (DHHC proteins) are protein acyltransferases. Although multiple DHHC proteins are found in eukaryotes, characterization has been examined for only a few. Here, we have cloned all the yeast and human DHHC genes and investigated their intracellular localization and tissue-specific expression. Most DHHC proteins are localized in the ER and/or Golgi, with a few localized in the plasma membrane and one in the yeast vacuole.Human DHHC mRNAs also differ in their tissue-specific expression. These results may provide clues to aid in discovering the specific function(s) of each DHHC protein.Abbreviations: ER, endoplasmic reticulum; EGFP, enhanced green fluorescent protein; 3xHA, triple HA; GAPDH, glyceraldehyde 3-phosphate dehydrogenase; HEK, human embryonic kidney; His 6 , hexa-histidine; PAT, protein acyltransferase; RT, reverse transcription; SC, synthetic complete 3
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.