Plants can sense and respond to mechanical stimuli, like animals. An early mechanism of mechanosensing and response is speculated to be governed by as-yet-unidentified sensory complexes containing a Ca 2؉ -permeable, stretch-activated (SA) channel. However, the components or regulators of such complexes are poorly understood at the molecular level in plants. Here, we report the molecular identification of a plasma membrane protein (designated Mca1) that correlates Ca 2؉ influx with mechanosensing in Arabidopsis thaliana. MCA1 cDNA was cloned by the functional complementation of lethality of a yeast mid1 mutant lacking a putative Ca 2؉ -permeable SA channel component. Mca1 was localized to the yeast plasma membrane as an integral membrane protein and mediated Ca 2؉ influx. Mca1 also increased [Ca 2؉ ]cyt upon plasma membrane distortion in Arabidopsis. The growth of MCA1-overexpressing plants was impaired in a high-calcium but not a low-calcium medium. The primary roots of mca1-null plants failed to penetrate a harder agar medium from a softer one. These observations demonstrate that Mca1 plays a crucial role in a Ca 2؉ -permeable SA channel system that leads to mechanosensing in Arabidopsis. We anticipate our findings to be a starting point for a deeper understanding of the molecular mechanisms of mechanotransduction in plants.calcium ͉ calcium channel ͉ calcium uptake ͉ mechanosensing
Mechanosensitive ion channels are expected to play important roles in transducing mechanical stimuli into intracellular signals during the development and morphogenesis of higher plants. We have identified a novel mechanosensitive anion channel in the protoplast of Arabidopsis thaliana mesophyll cells by using the patch-clamp technique. The channel in the outside-out patches could be activated by positive pressure in the pipette while negative pressure had no effect. The amphipathic membrane crenator trinitrophenol, which is supposed to preferentially insert in the outer leaflet of the lipid bilayer of the plasma membrane, synergized with mechanical membrane stretch to activate the channel. These results suggest that the channel activation is mediated by a convex curvature of the plasma membrane. Therefore, activation of this channel may play an important role when cell volume is increasing during cell growth or hypo-osmotic challenge, which is accompanied by membrane stretch with increasingly convex curvature.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.